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ABSTRACT

A retrospective cohort study was done on adult mBpatients database from Queen
Elizabeth Central Hospital (QECH) SPINE databasdeatify factors explaining time to

discharge from hospital while accounting for a ceting event: death. The study aimed
to apply and compare competing risk models on Tf.dgemi-parametric Cause-specific
hazards (CSH) and Sub-distribution hazard (SDH) efsodvere applied to model the
effect of HIV status, age, and Sex in relation ¢atth or discharge from hospital. Test for
model assumptions and diagnostics were conductedings showed that the SDH

explained best the effect of the covariates toptimdability of a patient being discharged
or dying. Further the main factors affecting lengtthospital stay among TB in-patients
were age and HIV Status. HIV positive patients wEf€6% less likely to be discharged
from hospital compared to HIV negative patients@.048) and an increase in age,
resulted in 2% decrease of chances of dischargs.ithportant to use the cumulative
incidence function for calculating probability of @vent. The SDH model was a better
model when studying data that involves competirgksii To meet the objective of

identifying prognostic factors of discharge in thieesence of competing risks, the sub-
distribution hazard model explained better the data effects on event discharge than
the CSH model. The findings emphasize the impoddaaise competing methods which

best meet the study objectives.
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CHAPTER ONE

INTRODUCTION

1.1 Background Information

Tuberculosis remains a major public health probveonidwide. It is estimated that one-
third of the world population is infected with Myacterium tuberculosis (WHO.,
2010).The severity of tuberculosis in the world agsened with social inequality, the
advent of acquired immunodeficiency syndrome (AIDS)d migratory movements
between countries. Thus, it's still a public healttallenge in most countries of the world
(WHO., 2012). In 2013, WHO reported that 9 millipeople around the world were sick

of TB and there were around 1.5 million TB-relatighths worldwide.

Globally interventions and measures such as theciyrObserved Therapy-Short course
(DOTS), and International Stop TB strategy aimedebliinating TB have been
implemented. These efforts have led to a successtfluction in TB cases world-wide.
Globally, a total of 56 million people were sucdallg treated and as a result, TB
incidence has fallen by 2% each year. Although iihe case, the global burden of TB

remains high especially in most developing coust(i¥HO., 2013).



1.1.1 Case of TB in Malawi

In Malawi TB is a major public health problem withe incidence of all forms of TB
being estimated to be 164 per 100,000, as repbsted 2012. The report also estimated
that in Malawi there were an estimated 29,000 nages of TB (all forms) in the year
2011, and approximately 18,000 of these were HI%itp@. A long term study by WHO
shows that TB funding in low and middle income dos grew from 2002 to 2011.
Despite the increment in funding, it is still ingd@te in comparison to the magnitude of
the problem. The majority of countries that hayeeavy TB burden are classified as low
income countries (GDP below 760 US dollars) (WHZD13). Malawi is among the 10
poorest countries in the world (UN Development R8pand has currently been ranked

as the first poorest country in the world by datenf the World Bank in 2015.

In Malawi TB has had a great impact on the socimemic well-being of the country. It
is reported that on average, patients spend 29 &Ji&rsl to access facilities offering
diagnostic and treatment services for TB (Kempalgt2007). Although this is the case,
(WHO., 2013) reports that the cost per person sstaly treated for TB with first line
drugs is in the range of 100 USD to 500 USD ircalintries with high burden of TB. In
view of these high costs, there is a need to utetsisdifferent aspects surrounding care

for TB patients and this includes studying fact@iated to hospitalization.

Since TB-infected patients who are admitted tohbspitals tend to have more serious
clinical conditions, the determination of theiratment outcomes carries a great clinical

and public health importance (Zetola. et al., 20Efually important, is an analysis of



the patients’ length of stay (LOS) in hospital lais ttan guide future resource allocation

for the treatment of such patients.

1.1.2 Length of Hospital Stay

Determination of factors that increase LOS may mi®vinformation that can help to
reduce costs and improve delivery of care (Coll@tsal., 1999).Most studies on length of
hospital stay have shown that LOS is an importastasure of resource utilization
(Frietas. et al., 2012) and it can partly explaspital costs as some studies have shown
that there is a strong correlation between LOS lawgpital costs. Thus, understanding

length of stay is vital for planning and funding\sees (Hinchliffe. et al., 2013).

Understanding LOS for Malawi, a developing countviiich provides free primary,
secondary and tertiary health care to its citizewsuld be very helpful since funding
health services is costly and thus there is a reedderstand ways in which the cost for
hospital services could be managed better. Alscerstanding LOS would help in
planning for the hospital services that are proditte patients, for example in terms of
bed occupancy. It would provide the hospital anraesv of how the TB wards are

operating in terms of space and quantity of medieats used.

In Malawi, patients are diagnosed for Tuberculdsidree and are mostly treated as out-
patients. This developed because before 2001, Ti8smaere congested with admitted
TB patients on treatment. In urban Malawi, the bedupancy rates were between 140 to

160%. These rate have gone down since 2002 wheamatlanal policy changed to giving



patients options of receiving initial phase of treant from hospital wards or health
centers or to have it provided by guardians atrthemes (Nyirenda. et al., 2003).TB
patients are only admitted to hospital care whémeeitheir clinical condition warrants it
and / or access to community-based care is nolaéai It is equally important that TB
patients be discharged for outpatient care atadirdis soon as they can be managed

effectively in the community (Tamiru & Haidar., 20)1

1.2 Problem Statement

There is large body of literature on competing mstidels for analysis of time-to-event
data in medical research (Dignam. et al., 2012¢Hliffe. et al., 2013; Kim., 2007; Lim.
et al., 2010). Studies in the past have employfdrdnt statistical techniques such as
Cox regression model, Logistic regression and @hase test to study Length of hospital
stay. A few papers have appeared in the applicaifoadvanced statistical models on
LOS such as the generalised linear mixed model (@IL.MFor example a hierarchical
Poisson regression model for maternity LOS (Leal.e2001) was developed to capture
the inherent correlations of patients clusteredhiwihospitals. A finite mixture regression
model with random effects and its application tcomatal hospital LOS has been
proposed by(Yau. et al., 2003), leading to the bgreent of the class of finite mixture
GLMM where heterogeneity in LOS has been modeleskpe these studies and papers
on LOS, a few studies have looked at modeling lermjthospital stay for TB patients

and have often not accounted for competing events.



In survival analysis an individual who experiene@sevent of interest within a specified
observation period is said to have an event, ofiserthe individual is said to be censored
if no such event is experienced in that period ey énd of the study. When more than
one event is considered (e.g., death from any wéraé causes), those events are known
as competing risks or competing events(Covielloalet 2004; Kleinbaum & Kilein,
2005) As Gooley (1999) stated, ignoring competing rigksl applying standard survival
models to a dataset that includes competing eVeatts to biased estimates thus leading
to biased conclusion. Therefore there is need ¢towatd for competing risks where they

exist.

In the study of length of stay for TB patients, ttheahile in hospital is one of the well-
known competing events since those who die do aet la chance to be discharged even
if the observation time was extended. Failure tcoaat for this would lead to invalid
estimates of time to discharge. Therefore, thidysmimed to estimate time to discharge

while accounting for competing risk death.

Hospitalizing TB patients can be challenging esgbcin countries like Malawi, with

limited health care resources or appropriate imepéfacilities (Dehghani. et al., 2011).
An analysis of length of in-patient hospital staydactors affecting hospitalization with
an account of competing events is important insssg and predicting the consumption
of hospital resources which is an important tool hiospital planning for resource
allocation. As stated by Hinchliffe et al, 2013,denstanding length of hospital is

important for planning and funding of hospital sees. Therefore the study aims at



modelling the LOS for TB treated patients to obsetlre length of time TB patients
remain in hospital and factors that influence thierage length of stay of TB patients in
Malawi using models that take competing risk int@aunt; and choose the best model

that explains the associated factors of lengthogpital stay.

1.3 Objectives of Study

The following are the study objectives:

1.3.1 Broad Objective
To apply competing risk models on time to dischageadult TB in-patients at QECH
with death as a competing event.
1.3.2 Specific Objectives
1. To estimate and compare the Cumulative Incidenggction with the Kaplan
Meier Estimator
2. To compare the Cumulative Incidence curves in ttesgnce of the competing
risk for the categorical variables; HIV Status, ABfatus, Gender.
3. To fit and compare the Cause-Specific Hazard anb-dstribution hazard
models.
4. To identify prognostic factors affecting time tscharge in the presence of event

death



1.4 Research Questions

The following were the research questions for theys
1. Do the cumulative incidence curve and the KaplarieMeurve give different

probabilities to discharge?
2. Which model (Sub-distribution hazard or Cause-Smet¢iazard models) best
explains time to discharge for TB patients?

3. What are the factors that affect time to dischdogd B in-patients at QECH?

1.5 Significance of the Study

Examining length of hospital stay for TB patientdl ywrovide an insight into this public

health problem and will contribute to the countrigase knowledge of factors affecting
length of hospitalization of TB patients. In additj the study contributes to available
work done in the field of survival analysis whendebing survival time while accounting
for competing events. Furthermore results of theeaech will help researchers
understand appropriate competing risk methods @éonsen studying length of Hospital

stay or epidemiological diseases.

The subsequent chapters present the Literaturewenh the study area, the methodology
used in the study, the results and discussion ef study and conclusion and

recommendation(s).



CHAPTER TWO

LITERATURE REVIEW

This section provides literature review on surviealalysis, survival function, hazard
function, hazard ratio, Kaplan Meier (KM) methotists for survival analysis, Models in

survival analysis, handling of time-varying covéemand competing risks approach.

2.1 Determinants of Length of Hospital Stay

Different studies have shown that age, HIV StaART therapy are some of the risk
factors associated with hospital stay. A study dbyeFerreira et al (2014) on factors
associated with hospitalization of tuberculosisgrdas showed that increased length of
hospital stay was proportional to increasing ageeeially > 40 years; male; single; low
education; tuberculosis/human immunodeficiency s/ifiB/HIV) co-infection; previous
TB episode; pulmonary and extra-pulmonary TB; pyasiopportunistic infection. They
used an integrative literature review, using theDMENE, LILACS, and ISI databases,
besides the SciELO collection, whose descriptorgewétuberculosis”, “hospital”,
“hospitalization”, “risk factors”, and “associatéattors. Their study did a comprehensive
literature review on factors associated with h@dpstay. Despite reviewing different
studies that have looked at this area of study,tmbthe studies focused on whether a
patient was discharged or not. As a result metlsods as the logistic regression, Chi-
Square test of association, were used to deterasiseciated factors of length of stay.

8



A retrospective study on Factors Associated withdtk of Hospital Stay among HIV
Positive and HIV Negative Patients with Tubercwdosi Brazil done by Ferreira et al
(2013) used a Chi-square test or a T-test at a Bffifisance level to obtain the
associated factors. The study showed that there wersignificant differences in the
length of hospital stay in HIV positive patientstbiound that minimum wages,
pulmonary tuberculosis form, negative smear testoomformation in this regard, initial
6-month treatment scheme, were associated tongetb hospital stay in HIV positive
patients. Another study in Brazil also concludedtth high number of patients with

TB/HIV are expected in hospitals as admission p&i€Oliveira. et al., 2009).

Tuberculosis is highly associated with HIV statfig patient. Many retrospective studies
have shown that tuberculosis is associated to HAVretrospective study done in
Lilongwe, Malawi showed that HIV co-infection wassaciated with a slightly poorer
TB treatment outcome. Only 38% of the TB/HIV newesmpositive co-infected patients
were on ART. Those on ART had successful TB treatmeatcomes compared to those
not on ART (Tweya. et al., 2013). Information on AR very important when modeling
survival of TB patients after admission, since ¢hex a relationship between ART and
TB treatment outcome, thus it needs to be congideteen studying factors that affect

length of hospitalization for TB patients.

The study by Tweya et al (2013), further found thath HIV and ART status influenced
TB treatment outcomes. This explains that lengthho$pitalization of a TB treated

patient is dependent on the HIV or ART status asetdaon the study. Those with HIV



who are not on ART are likely to have a poor TBcoate (are likely to have a high
LOS). Therefore when studying TB patients who al¢é kactive it is very important to
consider whether the patients are on ART or notdetdrmine if ART contributes to the

length of hospital stay of that patient.

2.2 Common Terms Used in Survival Analysis

2.2.1Censoring

Time to event analyses test hypotheses about thereace of an event of interest in two
or more groups with data that are often subjectdnsored observations. Censoring
occurs when information on time to outcome eventndg available for all study
participants. Three reasons of censoring are: vahggrson is lost to follow-up during the
study period, and when a person withdraws fromstiidy because of death (if death is
not the event of interest) or some other reasanikues concerning ethics for example
having adverse drug reaction. Censoring is of twees, right and left (Leung. et al.,
1997). Right censored data is mostly encountereidhwinvolves lost to follow up. Left
censored data can occur when a person’s surviva becomes incomplete on the left
side of the follow up period. Censored observatiora/ not only be due to losses to
follow-up or administrative cessation of the timeripd of consideration but can also be
due to events not of interest. This situation mbpgmatic if these “other events” preclude
observation of the primary event under considenatiéxperiencing a competing event
acts as a right censor on the primary event. Becafishis extra censoring, it is often
useful to estimate and compare cumulative everigtitities of a specific event, rather

than of all events as a whole.
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Censoring in survival analysis should be “non-infative,” i.e. participants who drop
out of the study should do so due to reasons upetkta the study. Informative censoring
occurs when participants are lost to follow-up tlueeasons related to the study, e.g. in a
study comparing disease-free survival after twattrents for cancer, the control arm

may be ineffective, leading to more recurrencesgtents becoming too sick to follow-

up

2.2.2Survival Function

Let T be a non-negative random variable denotirg time to a failure event. The
survivor function §t) gives the probability that a person survives Emghan some

specified timet: that is,St) gives the probability that the random varialblexceeds the

specified timet (Kleinbaum & Klein, 2005) In other words the survivor function also
known as survivorship function is simply the rewersf the cumulative probability

function of T. Where the cumulative distributiongisen by
F(t) =Pr(T < t) = [, fWdu (1)
and the survivor function is given by
SW)=1—-F@t)=Pr(T=1t) (2)

It is simply the probability that there is no faduevent prior to time t. The function is
equal to 1 at t=0 and decreases toward zero asst tgoinfinity. Its probability density

function is expressed as;

dF(t) _ df{1-s(t)} _
a4t

f@ = =S'(®) 3)
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2.2.3 Hazard Function

The hazard function also known as the conditioadéiife rate is the instantaneous rate of
failure. It is the limiting probability that the ifare event occurs in a given interval,
conditional upon the subject having survived toltleginning of that interval, divided by
the width of the interval (Cleves. et al., 2010)simple terms it is the probability that an
individual encounters an event of interest at tinr@nditional on having survived to that
time. If t is a continuous function with density functibnthen the hazard function is

defined by:

Pr (t+At>T>t|T>t) _ f(b) 4)

h(t) = limy;o AL =50

It can vary from zero (no risk at all) to infinifgertainty of a failure at that instant). It is
different from survival function because it spessfithe failure event while the survivor
function talks of the survival rate past a timekKie{nbaum & Klein, 2005). The

importance of the hazard function is that it pregdnsight into conditional failure rates.

It may also be used to identify a specific modehfo

2.2.4 Hazard Ratio (HR)

In survival analysis the hazard ratio is the ratidhe hazard rates corresponding to the
conditions described by two levels of an explanat@riable. The hazard ratios represent
instantaneous risk over the study time period. 2ahd ratio of 1 corresponds to equals
hazards between the two groups (i.e. treatmentardhcontrol arm). While a hazard
ratio of 2 implies that at any time twice as manythe treatment group are having an

event proportionately compared with the controlugr¢gDeurden., 2009).
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2.2.5 Kaplan-Meier (KM) Estimate

The Kaplan Meier estimator is a non-parametricneste of the survivor function S(t),
which is the probability of survival past time t, the probability of failing after t. It is a
popular method because it requires very weak adsomsp(assumes no form of
distribution) but utilizes information content obth fully observed and right censored
data. Suppose that k individuals have experienoeglvant of interest, such as death in a
group of individuals. If we leD <t; < -+ <t <o be the observed ordered death
times. Let kbe the number of individuals who are at riskggt tet d be the number of

observed deaths atjt= 1...k. Then the Kaplan Meier estimate at anyetinis given by

S() = Hj|tjst (nj_dj> (5)

nj

where Rnis the number of individuals at risk at timeaind the product is overall observed
failure times less than or equal to t (Kaplan. &idfe 1958). The estimator is a step

function that changes values only at the time chea

2.2.6 Cumulative Incidence Function

A competing risk must be accounted for in estingafeilure rates. The best approach of
assessing failure rates is by using the cumulaingedence curve to estimate the
probability of failures actually observed in pat®rwho are subject to censoring by

competing risk (Dignam et al., 2012).

The cumulative incidence, which is closely relatedhe survivor function encountered
in standard survival analysis, denotes the expgegateportion of patients with a certain

event over the course of time (Latouch. et al.,7200he CIF at time t for causes the
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probability of failing from cause before (or up to) time t, it represents the praiigb

that an event of typehas occurred by time t. It is represented as

CIF;(t) = P(T < tand failure from cause i) = fotfi(u)du. (6)

The cumulative incidence function helps to detempatterns of failure and to assess the

extent to which each component contributes to dMeiéure.

2.2.7 Cause-Specific Hazard Function

Survival function and Hazard function are importgoantities in the analysis of time to
event data. The survival function quantifies thebability of a person being event free at
a given point in time. While the hazard functiomaqgtifies the risk that a person who is
event free at a given point in time will experientte event in the next instant. In

competing risks, each event has an associated chdzaction known as the cause-
specific hazards (CSH). A cause specific hazardchtifies the risk of experiencing an

event from a particular cause (Aban, 2014).

The cause-specific hazard refers to the instantemeisk of failure from a specified
cause given that no failure from any cause hasgairred. Formally if failure can occur

for anyi =1, ... , k causes. The CSH for causg¢ time t is given as

P(t<T<t+At,D=k|T=t)

hi(t) = limyeo o (7)

T is equal to time to first failure from any causé\ subject will still be at risk at time t
given that the subject has not died of causeany of thd-1 other causes. For ©{1,2,

... , K}, It represents the hazard of failing fromueai in the presence of the competing
events.
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Emerging evidence now suggests that in the presaincempeting risks, which will be
further discussed, the cumulative incidence fumcteo method which takes into account
competing risks occurrence, is the appropriate atetise to estimate the probability of
occurrence of the event of interest in the preseficgher events. However, researchers
often use the Kaplan Meier approach (1-KM) to eatduthe survival probability of
occurrence of a cause-specific endpoint, eveneifappropriate data contain competing-

risk events (Gooley, 1999).

2.3 Competing Risk Approach

In medical research, each person studied can experione of several different types of
events over the follow-up period and survival tinaes subject to competing risks if the
occurrence of one event type prevents other ewpaistfrom occurring (Kleinbaum &
Klein, 2005). For example, in order to determine thcidence of discharge among
Tuberculosis patients, every patient will be folemifrom a baseline date (such as date of
admission) until the date of discharge from hosphapatient who is discharged during
the study period would be considered to have aernewat their date of discharge. A
patient, who is alive at the end of the study billtis hospital, would be considered to be
‘censored’. However, a patient can experience antedifferent from the event of
interest. For example, a TB patient may die du&Boor unrelated causes. Such events

are termed competing risk events.

When competing risks are present it is assumedthieasubjects contribute independent

and identically distributed observations to theagd#te component fails when the first of
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all the competing failure mechanisms reaches artastate; each of tHefailure modes
has a known life distribution model. (Pepe, 199iov@ier, 1994). One can assume that
each failure mechanism leading to a particular typ&ilure proceeds independently of
each other, including the risk of the event of riest, at least until a failure occurs.
However, this is often not likely to be true, peutarly when there is causal-effect
between events. To assume independence one mastédé¢hat a failure of one type of

event has no effect on the likelihood of any onnts (Crowder, 1994).

Competing risks modeling is important in time tadsting length of stay because a large
proportion of patients may either die or be disgkdr where if one dies, the event of
interest: discharged would not be observed. Comgetisks models offer significant

advantages over standard survival analysis wherpetng events exist (Putter. et al.,
2007). Various studies (Gooley et al, 1999; Find @ray 1999, Dignam et al, 2012)

have proposed the use of the cumulative Incidemicetion other than the Kaplan Meier
to estimate quantities pertaining to the probapditfailure caused by an event of interest

when other failure types may preclude it.

2.3.1 Comparison of the Cumulative Incidence Estinta and Kaplan Meier Estimate

A Comparison of the Kaplan Meier estimate to theglative incidence curves, shows
that the KM estimates probabilities of one failumneghe absence of any others while the
cumulative incidence curves of each of these canistslure will sum to the cumulative
incidence of any failure (Chappell., 2012). Beusetial, (2012) in their study found that

the Kaplan-Meier method overestimated the proligbitif each event, while the
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cumulative incidence provided accurate estimatiohevent probabilities. The study
looked at the efficacy of peritoneal dialysis (HD)survival of patients explained that a
patient on PD could experience a transfer to Healgsls, Renal transplantation or death
which was considered as competing events. Theydfdbat the Kaplan-Meier method
overestimated the probability of each event, i.eatd, transfer to HD, or renal
transplantation during PD. When the event investiavas death, patients censored
because of transfer to HD or renal transplantatias considered to be withdrawn alive
on PD, which led to an overestimation of the pralistof death during PD. When the
event studied was transfer to HD or renal trangptam, patients who died were

censored and considered to be withdrawn alive or{B@Dscart. et al., 2012).

Most studies use the complement of KM (1-KM) fomguarability sake against the
cumulative incidence. The complement of KM is atinestor interpretable only if events
due to all other causes are removed. The KaplaerMemplement (1-KM) of eventat
time t is defined as the cumulative probabilityeaperiencing eventbefore time t in the

absence of competing events. It is defined as;

KMC() = [y hi WS (w)Au ®)
=1-5(t) (9)
=1-exp(-H;®))i=1,..,K (10)

Where the event-specific survival function for ever§(t), is defined as the probability

that >t when I5. S(t) can be estimated by the Kaplan Meier estimator.

17



The probability of experiencing a competing evenbrmpto timetis assumed to be zero
when this does not actually reflect the true situmatinder competing events. Thus, the
complement of KM cannot be considered the true gdity of an event occurring
before a certain timé because competing events are treated as censosedvations

(Dignam et al., 2012).

Gooley, et al, (1999) states that the CI gives aenmaxcurate representation of the
cumulative event probability than the complemenKd in the presence of competing
events, because competing events are includectingk set. 1-KM is equivalent to the
Clin the absence of competing events. 1-KM alwayesrestimates the Cl in the presence
of competing events because reducing the numberdofiduals in the risk set inflates

the proportion of individuals at risk.

Verduijn et al, (2011) showed that when cumulasuevival probabilities for competing
events such as Cardiovascular (CV) and non- Caamdmuar (CV) mortality are
estimated by the Kaplan—Meier method, these prdibabiare profoundly overestimated
for each of the two separate causes. This is iticpéar the case in populations with high
mortality, such as in elderly dialysis patientsd/@n long duration of follow-up. As a
consequence, the sum of the estimated CV and nom@\ality probabilities is (much)
larger than the all-cause mortality probability amdy even exceed 100%. For this
reason, Kaplan—Meier should not be used to calkulatd present cumulative
probabilities curves for cause-specific mortalityre study looked at all-cause mortality

and cause-specific mortality (CV and non-CV motyavere analyzed by Kaplan—Meier

18



analysis and Cumulative Incidence Competing Riskiyais in two cohorts of patients

with end-stage renal disease (ESRD) on dialysis.

Contrary to the different findings on CI and I-KMBorrebach (2013) argues that
choosing between the complement of the Kaplan Maer the cumulative Incidence is
ambiguous, since Cl has a disadvantage of not relgd&ilures due to competing events
from the risk set. In his study, where data weneusated and analysis was done for four
scenarios; When there’s i) Primary event HazajdHigh competing event Hazard, iii)

High random censoring, and iv) High sample siddge results showed that all except

high competing event hazards had a differencearesitimates for the Cl and 1-KM.

Borrebach (2013) explains that 1-KM’s potentiainmdal advantages with an example
that suppose a woman diagnosed with stage Il bzaster is due to receive a more
aggressive treatment if, based on her charact=riber cumulative event probability is
predicted to be above a certain threshold. If liendative event probability is predicted
to be below that value, she will receive a lesgeggjve treatment. Suppose also that her
1-KM estimate lies above this threshold, whereas @k estimate lies below this
threshold. In this case, her clinician may decalexercise caution and use 1-KM, giving
the more aggressive treatment and presumably haviggeater chance of treating her
cancer. He further explains that there may be mtsts where clinicians would want to
avoid overtreatment when the treatments (e.g.,aicerthemotherapies, radiation
therapies) have potentially harmful side-effectshaiir own. In those cases, using the CI

may be desired instead. The problem for clinicihesomes whether they want greater
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predictive accuracy or to exercise caution in caglesre the benefits of over-treatment

are perceived to be greater than the risks (Boctel2013).

The studies have clearly shown that using cumuwdaticidence estimates when dealing
with competing events lead to unbiased estimatdheotumulative probabilities unlike
using the Kaplan Meier estimate, although the cempint of KM might still be

clinically advantageous when making decisions.

2.4 Test of Hypothesis

In addition to estimating the survival functionsai{an-Meier Estimator in Origin
provides three other methods to compare the surfuvection between two samples.
These include; Log Rank, Wilcoxon and Tarone-Wadce ‘Bhese tests are very useful in
assessing whether a covariate affects survival iemtaey do not account for competing
events available in dataset. Therefore two altereahethods: Gray's test and Pepe and
Mori test, for comparing cumulative incidence cwe¥er a particular failure type among
different groups are presented in this sections Bhiidy used the Pepe and Mori test to

test for equality of CIF between two groups.

2.4.1 Pepe and Mori’'s Test
Pepe and Mori’s test is a 2-sample test that wasdaced by Pepe and Mori (1993).
This test compares the cumulative incidence funeti(CIF’s) directly for the event of

interest. The null hypothesis is that there is ifi@ieetnce between the 2 groups.
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2.4.2 Gray’s Test

Gray's test is a K-sample test that was introdubgdGray (1988). It compares the
weighted averages of the sub-distribution hazactdssa groups for the event of interest.
The null hypothesis is that there is no differeaogong the K groups. The test is based

on the K — 1 score statistics

2.5 Models in Survival Data Analysis

This section presents the survival models thatumed to estimate the effect of the
covariates on the hazard rate of an event. Theskelsisuggested in the literature include
the Cox semi-parametric proportional hazard moddlsome parametric models like the
exponential model, and Weibull Model and Log-Nornmabdel. The Cox PH and
competing risk models were discussed in this sectimce they were used in the analysis

of the TB in-patient data.

2.5.1 Cox Proportional Hazard Model

It is the most common approach to model covariffieces on survival. It takes into

account the effect of censored observations (CbX72). The model is based on the
assumption of proportional hazards and no prolgldistribution assumption is made on
the survival times. The only assumption made ighenproportionality of the baseline

hazard. The model is therefore referred to as a-parametric model. The proportional
hazard assumption means that the hazard ration&at over time or that the hazard for

an individual is proportional to the hazard for aather individual (Therneau. &
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Grambsch., 2000) et x;, .. Xp be the values of p covariates X. X,, according to the

Cox regression model, the hazard function is gagfollows;

h(t) = ho(Oexp (X7, BiX)) (1)

Wherepi = (B1,B2,...Bp) is a 1 x p vector of regression coefficients bg(d) is the baseline

hazard function at time t.

In many applications, competing risks have beewngt (such as, patients experiencing
competing events were censored at the time of thesets) and standard Cox regression
was applied. This approach is adequate when contpesks are rare because it assumes
independence between the event of interest anc@Ehebservations. However, in the
presence of strong competing risks, standard sairvivodels may overestimate the
hazard of the event of interest because subjedts avicompeting (and thus censored)
event are treated as if they could experience Weateof interest in future (Putter et al,

2007; Wolbers et al, 2009).

2.5.2 Cause Specific Hazard Model
The regression model on cause-specific hazardsfadlaws:
hi(t]x) = ho;(t)exp (Bx) (12)
Where X is a vector of explanatory variables @ind a vector of coefficients. The total
risk of any event happening, the overall hazare ist
h(tlx) = X hi(2). (13)
The typical “cause-specific” approach for analyzammpeting risks data is to perform a

survival analysis (standard Cox regression) forheagent type separately, where the
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other (competing) event types are treated as cetismtegories. There are two primary
drawbacks of the above method. One problem is tthetabove method requires the
assumption that competing risks are independergiffghum & Klein, 2005) which is
not the case when dealing with competing risk dasapreviously discussed, to estimate
the survival probabilities, the CIF is much apprafg when dealing with competing risk.
The Cox-Proportional hazards may be used to mduel cause-specific hazards in
regression modeling (Aban, 2014). However testorgefjuality of CSH is not equivalent

to testing the equality of CIF(Gray, 1988).

Cause-specific hazard and corresponding hazarad’'satare estimated using Cox
proportional hazards model for each failure ev&hte comparison of the cause-specific
hazards is made as if the other types of eventsidicexist. Kim (2007) regarded this

approach as unrealistic.

Several modeling approaches are available for atialy effects of covariates on the
cause-specific outcome in competing risk data (F&eGray., 1999). Two popular
approaches are (1) modeling the cause-specificrthaat each event separately by
applying the standard Cox regression for the eweénhterest and censoring all other
observations. The second approach is Fine and &1@@99) extension of the Cox

regression that models (the hazards) the CIF.
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As already mentioned, the cause-specific hazardoeamodeled using the Cox model,
which is broadly used in medical research. Theticzlahip between the Gl and the

cause-specific hazard is mathematically represeaded
t

CIF;(t) = J hi(x)S(x)dx
0

= [} hi(exp{— Tl H;(x)}dx

= [ hexp{Th, [ @du)dx  (14)

Where S(x) is the overall survivor functiony(¥j is the cause-specific for cause j, which

is integrated from O to x of the CSH for cause j.

A study done by Andersen et al (2012) on Compeigl in Epidemiology Possibilities
and Pitfalls deduced that a one to one correspaedbetween a single rate (cause-
specific hazards) and the corresponding risk (catiwd incidence [CI]) no longer exists.
This means that any given Cl depends on all capseHtc hazards and vice versa. Also
another consequence of lack of correspondenceatsctivariates may affect a cause i
specific hazard and cause i Cl differently. He ssged that cause-specific hazards may
be more relevant when the disease etiology istefést, since it quantifies the event rate
among the ones at risk of developing the eventnbtérést. Though this was their
deduction, they concluded that ClI's are easienterpret and are more relevant for the

purpose of prediction.
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Cause-specific hazards can inform us about the gtnfarisk factors on rates of disease
or mortality, while the cumulative incidence fummts provide an absolute measure with
which to base prognosis and clinical decisions Kallér. et al., 2011). Although the
CSH’s and the CIF are reported separately, Hinffehlif2011) did a study that would
model competing risks scenarios using an apprdaathestimates both the cause-specific
hazards and the cumulative incidence functionshey telieved both to be useful
measures. Such an approach was defined by Fin&eayd(1999) and will be explained

in the later section.

2.5.3 Sub-Distribution Hazard Model

In recent years, research methods centered ontlgiessessing covariate effects on a
CIF have been developed (Jeong & Fine, 2007). @paitant work is the proportional
sub-distribution hazards model proposed by Fine@rai/ (Jeong. & Fine., 2007). This
approach directly measures the covariate effectt@cumulative failure probability due
to one risk, in the presence of other risks. Finé @ray (1999) specify a model for the

sub distribution hazard formally defined for fagurause as

(15)

T . P(t<T<t+Atandfailurecausei|T>t or (T<tandnotfailurecausei)
Ri(®) = limye- { o

This hazard generates failure events of interesievileeping subjects who experience

competing events “at risk” so that they are courtedot having any chance of failing

As in any other regression analysis, modeling @IFdompeting risks can be used to

identify potential prognostic factors for a partamuevent in the presence of competing

25



risks, or to assess a prognostic factor of inteafistr adjusting for other potential risk

factors in the model.

The cause-specific hazard model may be more clipicaderstandable when assessing
the prognostic effect of the covariates on a spe@luse because we see that the
covariate effect would be to reduce or increasdrb@ntaneous probability of the event
of interest irrespective of other covariate effétdwever, when the study objective is to
compare the probability of the event of interelsent the sub-distribution hazards model
is appropriate (Lim et al, 2010). The sub-distiibatmodel is more desired because it
assesses covariate effect on CIF directly unlikesesspecific model which is an indirect
measurement. Although this is the case the subhliibn hazards model might be
limited to populations with similar characteristiaad similar competing risk rate, the
cause-specific hazard model is applicable for amyupation with similar characteristics
regardless of the rates of competing risk eventstilig, 2007). The sub distribution
hazard model can be used to calculate the CIF froymnthe equation;

CIF;(t) = 1 —exp{—H;(t)} (16)

Where H;(t) = fot h;(t)dt is the cumulative sub-hazard. The sub-distribution hazard

model is semi-parametric in that the baseline sedatih, ((¢) (covariates set at zero) is

left unspecified, while the effects of the covagat are assumed to be proportional;

hi(t1x) = hyo()exp (xB) (17)

No direct relationship exists between the causeiSpehazard and the cumulative

incidence function in estimating effects of coveta Therefore, in such situations, the
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emphasis must shift from the conventional modelbhgause-specific hazard function to
modelling of quantities directly tractable to thenwlative incidence function (Fine and

Gray 1999; Klein 2003).

In their study, Methods of competing risks analysfsend-stage renal disease and
mortality among people with diabetes, Lim et aQX@) showed that the estimates of the
covariates coefficients on the cause-specific liszand on the sub-distribution hazards
models were different. Their study applied a cagmesific and sub-distribution hazards
model to a diabetes dataset with two competingriskd-stage renal disease (ESRD) or
death without ESRD) to measure the relative effarftscovariates and cumulative

incidence functions.

Latouche et al, (2007), also showed that the effe€tcovariate on the cause specific
hazard and on the sub-distribution hazard were albyndifferent. This clearly shows
that to test for effect of covariates on the ClFsiwatable regression model for the
competing risks must be used. Lim et al (2010) kated that either the cause-specific
hazards model or the sub-distribution hazards model be used for a dominant risk.
However, for a minor risk we do not recommend thle-distribution hazards model and
a cause-specific hazards model is more appropnaempeting risk data analysis

The Sub-distribution and Cause-specific hazard inegee applied to assess the effects
of covariates on the cumulative probability of lgedischarged taking into account that a
patient can die within the hospital period. Thedgtthen compared the effects of the

covariates on the cumulative incidence and causeifsp hazard to choose the best
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model that best explained the relationship betwdencovariates and the cumulative

incidence function or the cause-specific hazardtion for the event of interest.

2.6 Model Diagnostics
This section presents different approaches to ssges assumptions under different
models. These include the use of time varying dates, Cox Snell for goodness of fit

test and graphical approach using schoenfeld ralsidu

2.6.1 Cox Snell Residuals
The basic issue involving the use of the Cox-Sresdliduals is goodness of fit of the Cox
PH model. As defined by Collet (2003), Cox-Snedlideials are given as

re; = exp(ﬁ’xi)ﬁo(ti). (18)
When assessing the model, the plot of the intediaézard based on the residuals against
the hazard rate estimates backed out of the Coxehstwuld have a 45-degree slope.
Therefore if Cox model fits, then the residualswidtidoe distributed as unit exponential
i.e. should behave as if they are from a unit egptial distribution. The Cox-Snell

residual was applied to determine if the modelgtl to the data.

2.6.2 Time- Varying Covariates

Kleinbaum and Klein (2005) define time-varying coages as any covariate whose value
for a given subject may differ ovérwhereas a time-independent variable is a variable
whose value for a subject remains the same o\ar our study, age and HIV status can

be regarded as time-varying covariates. Collet 2@fefined an Internal and External
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time-dependent variable. Internal variables arateel to a patient within the study and
can be measured if and only if the patient is abwg Blood pressure, CD4 count etc.
While external variables are variables that donmemtessarily need the patient to be alive
for example Age of a patient. Time varying covasatcan be used in the different
survival models and they produce time-varying dogfhts. If for example the Cox PH

model includes a time-dependent variable X(t)thenrhodel becomes:

hi(t) = ho(Qexp {X7_, Bixi; (1)} (19)

Where R(t) is the baseline hazard function for an indiattor whom all the variables
equal to zero and is constant. The values of tipaaatory variables;(t) depends on
time and in such a situation the proportional héizassumption is violated. This study
used fitted models with time-varying covariatesassess if the PH assumption was met

in the Fine and Gray model.

2.6.3 Schoenfeld Residuals

In this study three types of models were considefidtese are the non-parametric
cumulative incidence function, Cox-cause specifizdrds and sub-distribution hazards
model. The Cox-CSH and SDH model assumes thatdbart ratio comparing any two

specifications of a covariate is constant over tifieis means that the hazard for one
individual is proportional to the hazard for ani@tindividual (Cleves, et al, 2010).

To check whether the PH assumption is met in résfge@ particular covariate, the

Scoenfeld residuals proposed by schoenfeld (138@3ed. Collet (2003) denotes ttie

scoenfeld residual foX;, jth explanatory variable in the model as given by;

Tpji = 0i{X;; — @ji; (20)

29



Where ¥ is the value of th¢th explanatory variablg=1,2,3, ... ,p, foith individual in
the study. The schoenfeld residuals are partiguladeful in evaluating the PH

assumption after fitting a Cox regression model.

2.6.4 Martingale’s Residuals
These residuals are used to check the functiomal & continuous covariates. Hosmer
and Lemeshow (1999) define the martingale resicasls

M;=C;—H; (21)
Where the components of the residual forithesubject are the values of the censoring
variable G and the estimated cumulative hazafgH (t;, x;, 8). Therneau, Grambsch
and Fleming (1990) proposed fitting the Cox modehewut the covariate. The results are

then used to generate smoothed values such asslamasoth. These are then plotted

against the values of the excluded covariate.
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CHAPTER THREE

METHODOLOGY

This chapter describes the methodology used indfuidy. In particular, study design;

data collection and data analysis; analysis appraad lastly ethical consideration.

3.1 Study Design

The study used secondary data from SurveillancegrBnome of In-patients and
Epidemiology (SPINE) project, collected at Queenzaleth Central Hospital, in
Malawi. This study was a retrospective cohort asialpf data from people with all forms

of TB in the year 2014, (fronTWanuary 2014 to 38November, 2014).

3.2 The SPINE Data

SPINE (Surveillance Programme of In-patients andd&piology) project is a
computerized real time data collection system. ififi@mation system recorded tracked
and managed in-patient care and appointment ddta. patient registration system
allowed all patients to be recorded with relevastads. Using a unique barcode for each,
it was able to identify patients so that their melsocould be retrieved from the system in

future visits by simply scanning their assigneccbdes.
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The SPINE data was availed for this thesis in Miofo Excel spreadsheet format. It
covered patient’'s diagnosis and admission informmatiom January 2010 to November
2014. The dataset used in this study containednrdtion on adult in-patients only. An

adult here was defined as any individual 15 ye&egje and above.

3.3Data Collection and Management

The study extracted the TB cases into MicrosoftdEx2007 from the SPINE database
admitted from January and followed up for 6 monifise study utilized information on
adult male and female patients who had been adimitdh TB and were on treatment.
Time to discharge or death whichever occurs firas waptured. Date of admission and
date of discharge from hospital after a treatmemt@me observed was collected. Socio-
demographic characteristics and clinical infornratieas collected from all subjects. The
socio-demographic characteristics included were age gender. The clinical data
included HIV status; ARV status; date of HIV testdaa patients TB class (whether
pulmonary or extra pulmonary). Once patients wehmitied, they were tested for their
HIV status, if found reactive, they were put on AR€atment. These records were

entered into SPINE under the medical records femptitient for future reference.

3.4 Sample size and Sampling procedure

The data of this study came from Queen Elizabethtr@e Hospital through Malawi
Liverpool Wellcome Trust. The data had informatimm patients with all forms of TB
and admitted due to unstable clinical conditionsrefiresentative sample of 4500 TB

admissions were available in the dataset of adlnltse required age group of 15years

32



and above which was the target population of thudys The study analysed information

from 2220 TB patients who were admitted with TBidgrthe interested study period.

3.4.1 Inclusion and Exclusion Criteria
» The study looked at TB patients (15 years old) wieoe admitted within January
and June 2014, the entry point was admission ipitedglue to TB or bad clinical
conditions other than TB.
» Patients on TB treatment below 15 years old and whie treated as out-patient

were not included in the study

3.5 Study Outcome
The main outcome variable of this study was
* Time to discharge from hospital
Time to death was also considered as an outcomablabut was used as purpose of

explaining its effect on modeling time to dischavgth death as a competing event.

3.6 Data Handling and Description

The data was collected from the QECH spine databasepatient case records once
authorization was sort and approval was given liy @ollege of Medicine Ethical
Committee. The data was explored to obtain importanables that would be used for
analysis. The data was first cleaned, and theredddr easy navigation when doing
analysis.In this study the individual patient (willB) was the unit of analysis and the

outcome variable consists of situations which wemees to: discharge (main event),
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death (competing event) or censored (TransferregferRed and absconded). The
variables under censored were grouped into onablariCensored” due to small sample
data within each variable. Length of stay (timeliecharge) was calculated from date of
hospital admission to the date of discharge indgdiny hospital transfers that occurred.
Categorical variables were coded using numbersngae =0, female=1; HIV positive =

1, HIV negative=0; died=0, discharged=1, censoredAge and time to discharge were

continuous variables. Survival time was measurethis.

3.7 Data Analysis

The analysis first looked at some descriptive stias (frequencies, Inter-quartile range,
and median) for the baseline characteristics. climulative incidence curve and Kaplan
Meier curves were compared. Cl curves for categbxiariables; gender, HIV status and
ART status were obtained and comparison betweewliffexent groups for the patients
in terms of survival was performed. Secondly th@e?and Mori test was done to
compare cumulative incidence to discharge betweenpg for gender, HIV status and
ART status. The null hypothesis was defined asctimaulative incidence to discharge is
the same for both groups. Inferential statistroglved obtaining hazard ratios for the
calculated probability. Finally at a multivariatevel factors that affect the time to

discharge for a patient on TB treated were obtained

Statistical analysis were done using STATA versi@) a statistical software package
created in 1985 by StataCorp used in data manade®tatistical analysis, graphics and

Simulations. Two extra programs from Statisticalft®are Components archive was
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needed to conduct analysis on non-parametric cumvelllcidence function. To estimate
nonparametric cumulative incidence function, theno@and stcompet (refer to Appendix
1)by Coviello and Boggess (2004) was installedtélsd equality of cumulative incidence
functions among groups, the command stpepemorienrity Coviello (2008) was used.
The sub-distribution hazards were performed usitegfaS12 command stcrreg. The
Schoenfeld residuals and plots were used to testPtH assumption. The Martingale
residuals were used to check the Linearity of \d@iage. Time-varying covariates were

used to test for PH assumption for the Sub-distidiouhazard model.

3.8 Model Specification

Competing risks are represented by the failure fimne failure cause D and a vector of
covariates Z. T is assumed to be a continuous asdiye random variable, D takes
values in the finite set {1, ...i}. The failure cause D can be either the eventtdrest,

in our case D=1 representing “Discharge” D=2 repmésag “Death” and D=3
representing “Censored”. This study used semi-patacnproportional hazard models
because of their flexibility (no distributional assption on time and availability of

software for fitting these models).

3.8.1 Plotting Cumulative Incidence Function
The estimation of the probability of occurrencetioye t, for a particular failure can be
handled by fitting 1-KM, the complement of the KaplMeier estimator or the

cumulative incidence function. This study did calesi1-KM for the estimation because
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it leads to bias when dealing with competing evdmiis a comparative analysis was done
between the two.
CIF is the probability of experiencing an eventebgiven time. Denoted dgit describes

the risk of failing from causk until timet: I (t) = P(T<tandD = k).

3.8.2 Modelling Cause-Specific Hazards
As stated in the previous chapter, the cause-spdwtard function for failure caugds
the instantaneous failure rate of failing at tinoé causek.

The cause-specific hazard function for the k-thseais defined by;

hk = lim

At—0 At

{P(t <T<t+At,D=k|T = t)}
ForDe{l1,2, ..., k}. It represents the hazard of failifrgm cause j in the presence of the

competing events. The regression model on causefisgeazards is as follows:

h(t|z) = hgieP'”

The total hazardh(t;z)defined in terms of the cause specific hazards leqtke

corresponding hazards function summed up to tiegefollows;

2
ZADEDWNG
k=1

This implies that the all cause hazard rate isstima of K hazards (Grey 1988).Several
studies have pointed out that the Cox-Proportidradards can be used to model the
cause-specific hazards in regression modeling (ABaa4). Although this is the case,
cause-specific hazards have some shortfalls, orteeoproblems being that the above

method requires the assumption that competing risksindependent (Kleinbaum &
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Klein, 2005) which is not the case when dealindghvdbmpeting risk data. In this study
the cause specific hazard was modeled using then@udel, which is broadly used in

medical research.

3.8.3 Modelling Sub-distribution Hazards

Fine and Gray (1999) developed a semi-parametrideinthat considers all important

factors in a competing risk setting. These factmes the baseline hazard effect for the
outcome events, the covariate effect for the outcements and the effect of time itself. It
directly links the covariates to the cumulativeidence function. The Fine and Gray is a
proportional hazards model for the sub-distributiazard of the event of interest defined

as

dlog(I — 11 (1))
dt

L) = -

Given covariate X, the model is of the forpGt|X) = 4, ,(t) exp(B¢ X), whereld, o(t)

is the baseline sub-distribution hazard for thenéwa interest. This study used this
method as explained in literature that it is a nhdHat directly links covariates to the
cumulative incidence of discharge, therefore thisthond was appropriate to identify

prognostic factors of length of stay.

3.9 Ethical Consideration

Full ethical approval was granted by College of Mew Research Ethics Committee
(COMREC) to collect data from Queen Elizabeth Carittospital. Patients’ names were
not used during analysis so as to uphold confidétyti Refer to certificate of approval in

Appendix 4.
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CHAPTER FOUR

RESULTS AND DISCUSSION

This chapter presents and discusses the resutthdla been obtained from the study
analysis. Section 4.1 presents the exploratory aaddysis, section 4.2 presents the fitted

models, and section 4.3 presents model assumpsEssment.

4.1 Exploratory Data Analysis
The SPINE dataset had 1325 patients who were asthatt QECH between January 2014
and November 2014 for TB related diseases. OuB®b,1lthe study analysis considered a

total of 1220 TB-infected patients.
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Table 1: Baseline Characteristics

Frequency Interquatile Range

Median Std. Dev. 25th 75th

Age (Years) 35 119 29 43
Time to discharge (Days) 11 204 6 20
Categorical Variables n(%)

Gender

Male B[B5.6)

Female §44.4)

HIV Status

Positive 69@B6)

Negative 162)

ART Status

No 252 (25.3)

Yes 731 (73.3)

Defaulter 4 1.4)

Health Outcome

Discharged Alive 891(73.0

Dead 22826.39)

Censored

(Transferred,

referred &

absconded 0.57)

Table 1 gives a summary of the baseline charatitarisf the patients included in the
study. The median time to discharge for TB patiemthe year 2014 was 11 days. Out of
1220 TB patients, 891(73.03%) were discharged alikide 322 (26.39%) died while in
hospital and 7 (0.57%) where either transferreférred or absconded the admission, 678
were males representing 55.6% and 996 (86%) patigete registered as HIV positive.
Out of the 996 HIV positive patients, 731 (73.3%@rev on ART therapy, while 252
(25.3%) were not on ART therapy. Table 1 show ttied,percentage of TB patients who
were HIV positive was high (86%) as compared to p&ients without HIV. This
observation agrees with the WHO 2003 report, wistelted that most common cause of
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immuno-suppression in Malawi is HIV infection thkgads to AIDS and that HIV
infection leads to rapid progression from TB infectto disease and increases the risk of
re-activation of old infection into active disea3de lifetime risk of developing TB of
HIV non-infected individuals is between 5 to 10%iletthat of infected individuals is

between 30 to 50% or 5 to 15% per year(WHO, 2010).

The primary diagnosis variable which explained tfaients diagnosis at admission
constituted of different type of Tuberculosis, whincluded; Tuberculosis Miliary, TB
sepsis, TB spinal, TB meningitis, TB pulmonary é&ppendix 2summarizes the various
TB categories that the patient’s in this study wprenarily diagnosed of. The table
shows that 469 patients had Pulmonary TB and beaetwere some categories stated as
TB, Pleural PTB (Pulmonary Tuberculosis), PTB relmpsome of these fell under
Pulmonary TB. It also shows that 80 patients hadefculosis EPTB (Extra-pulmonary
Tuberculosis) but they were also others who had BEEP&lapse, Tuberculosis Iris,
Tuberculosis Anemia etc. Length of hospital staswased on the primary diagnosis of

all forms of TB.
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Table 2: Characteristics of the TB patients by Outome category

Variable Categories Outcome Categories
Alive Dead Censored Total
Sex Male: n (%) 478 (70.3) 199(29.3) 3(0.4) 680
Female: n (%) 415 (76.6) 123 (22.7) 4 (0.7) 542
Art Status No: n (%) 194 (76) 58 (23) 1(0.4) 253
Yes: n (%) 526 (72) 200 (27) 5(0.7) 731
Defaulter: n(%) 12 (86) 2 (14) 0 (0.0) 14
HIV Status  Non-Reactive: 126 (78) 36 (22) 0 (0.0) 162
n(%)
Reactive: n(%) 731 (73) 259 (26) 6 (0.6) 996
Age (Years) Mean (IQR) 34 (13) 38 (14) 42 (20) 35 (14)
Failure Median (SD) 12 (21.7) 10(15.8) 5.5(5.4) 11(20.4
time(Days)

Table 2 shows the baseline characteristics agtiasiependent variable type of failure.
The results from the table showed that there whgla in-hospital mortality rate in the
various categories. Out of 680 male TB patients§ 470.3%) were discharged alive
while 199 (26%) died while in hospital. Althoughghs the case, it can be observed that
the percentage of death in males is higher thdanrales. One of the reasons suggested
of this difference is that males in general hawghér risk of acquiringvlycobacterium
tuberculosis infection because of a wider network that leada greater exposure to the
organism (Johansson. et al.,, 2000). Out of 996 HoOgitive TB patient's 731(73%)
patients were discharged alive. Out of 162 HIV niegapatients 126 (78%) were
discharged alive while 36 (22%) died while in hagbiThere were no patients who were
transferred or referred from this group. Among iH¥ positive patients, out of 731 who

started ART therapy, 526 (71.96%) were dischargewh fhospital and 58 (76.68%) died
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while in hospital. A higher percentage of HIV negatpatients were discharged than

HIV positive patients but the results were notistally proven if significant.

Table 2 shows that, the median time to discharges alas 12 days and 10days for
patients who died in hospital. The median hosgitay for TB patients at QECH was 11
days. Holmquist et al. (2008) found that in 200& average hospital stay in the US for a
primary Tb diagnosis was 15.0 days more than tivieeaverage stay for a patient with a
secondary TB diagnosis (6.6 days). A study on Taulesis on African refugees from
Eastern sub-Saharan Africa found that the averaggth of hospitalization for the TB
patients they studied was 8.7 days. The patients a@mitted due to TB related diseases
or due to clinical conditions other than TB (Neshetr al., 2012). A study done in
Botswana showed that Mean duration of stay in theptal for TB patients was 12 days
(Stolp. et al., 2013). The duration of stay in thiady was determined by TB illnesses
and not diseases un-related to TB. These non-Té&asges could be contributing factors to
length of stay. Appendix 3 summarizes patient’soedary diagnosis. A study done in
Israel studied length of stay of patients with TBiomwere admitted due to various
reasons on top of TB illnesses. Their study shothatithe mean LOS was 8.7 days. One
reason explaining this difference with results fréis study, could be because the
hospital under study in Israel did various testsdentify TB and the patients were
admitted mainly due to TB which is not the casénwitalawi where simple tests are done
but advanced tests that require high technology rateavailable such as extensive

radiological investigations: a chest computed toraplgy scan, abdominal CT and spine
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CT and magnetic resonance imaging, trans-bronbinglsy and pleural biopsy (Nesher.

etal., 2012)

Density
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Figure 1: Distribution of Patient’s Length of time in hospital
Figure 1 shows the distribution of patient’s timehobspital. The figure shows that time to

discharge for a patient was skewed to the right wtost patients being discharged

around day 11.
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Figure 2: Distribution of time to discharge by Gender and HIV Status

Figure 2 shows that for females HIV positive or atége the median length of hospital
stay is similar. The same applies to HIV positivel megative males, the median length
of hospital stay is similar and the median lengtrstay is higher for males than for
females. The median length of hospital stay forasiad 12 days and 10 days for females
with varying time outliers. Figure 2 shows that thstribution of time to discharge was

right skewed for males and females who are HIVipasand negative.
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4.2 Comparison of Cumulative Incidence and Complenra of Kaplan Meier (1-KM)

Comparison of 1-KM and CI

Probability

T T T T
0 50 100 150
length of time in days

‘ — —— Complement (¢]] ‘

Figure 3: Comparison of 1-KM and Cumulative Inciderce (CI) curves

The 1 minus Kaplan-Meier (1-KM) estimates and clatiué incidence estimates were
generated, plotted and compared. From day 1 th&llektimates and the CI estimates
were similar. As shown in Figure 3 the estimatgsdband 1-KM are similar but as the
number of day’'s increases, the estimates greafferdirom each other. The 1-KM
estimator provides inflated probabilities of discfamong the TB patients as compared
to the cumulative Incidence. The difference is waoyiceable after 10 days and increases
with more competing events i.e. death as eviderfteoh Figure 3. Whereas the
cumulative Incidence estimates the probability isicdarge before time t and its cause
specific hazard which is the conditional probapilif being discharged before a time
interval given that an individual has survived atid not die up to time t. Thus the CI
estimates the probability of discharge taking iatwount that one might die before a

discharge resulting in true and realistic estimatieprobability of event discharge. The
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cumulative Incidence estimates and compares cuivellavent probabilities of a specific

event.

This finding is similar to several studies and aush(Borrebach, 2013; Gooley. et al.,
1999; Sherif, 2007)that have pointed out that thasCan appropriate tool to use for
estimation in the presence of competing risks. iB(007) stated that the use of 1-KM
to estimate cause-specific cumulative probabilitleads to inflated estimates of
proportion of patients at risk of failure at timeSince the 1-KM makes an assumption

that the probability of failing prior to time t fno cause k is equal to 0.

4.3 Model Estimation Results

4.3.1 Non-Parametric Cumulative Incidence functions

Cumulative Incidence by HIV Status Cumulative Incidence by ART Status

.6
.6

Cumulative Incidence
4
1
CumuIativ<=21 Incidence
.

2
2

T T T T T T
0 50 100 0 50 100
Analysis time in days Analysis time in Days

----- HIV negative HIV positive No ——— Yes
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Cumulative Incidence by Sex
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Cumulativ% Incidence
.

2

T T T
0 50 100 150 200
Analysis time in Days
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Figure 4:Non-parametric cumulative Incidence functons for HIV Status, ART
Status and Gender

Figure 4 presents a comparison of the CIF’'s foegaties within groups. The figure
shows that HIV negative patients had a higher iliogld of being discharged than HIV
positive patients. HIV negative patients had a @&ibability of being discharged by day
50 while HIV positive patients had a 0.6 probabilf being discharged. The CI curve
for ART shows no difference, implying that therenis difference in the probability to
discharge for patients on ART and for those noART.

Table 3: Pepe and Mori cumulative Incidence tests

Parameter Outcome Event x3 P-Value

HIV Status Main Event Discharged 0.158 0.691
Competing Death 1.993 0.158
Event

ART Status Main Event Discharged 0.650 0.420
Competing Death 0.834 0.361
Event

Patient’'s Sex  Main Event Discharged 0.476 0.490
Competing Death 2.307 0.129
Event
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The p-values for the Pepe and Mori tests, for mtbnts (discharge and death) from
Table 3 above lead to failure to reject the nupdipesis which states that the cumulative
incidence for the categories are similar. This shtivat there is no significant difference
in cumulative incidence of discharge and deathtlier three categorical variables (p-
value > 0.05). Based on the test at a 5% probglafimaking an error, HIV positive and
HIV negative TB patients have the same likelihoddeing discharged or dying from
hospital. Although this is the case, Figure 4 shives HIV negative patients with TB at
QECH had a higher likelihood of being dischargeainfrhospital than HIV positive
patients. Figure 4 also shows that females hadylehilikelihood of being discharged
than the males though the Pepe and Mori test shah&tdthere was no significant
difference in the cumulative incidence between maled females. In terms of length of
hospital stay, Figure 4 showed that HIV positive PBtients and male TB patients
seemed to have a longer hospital stay before digeithan HIV negative patients and

female patients respectively.

4.4 Competing Risk Regression Models

4.4.1 Semi-Parametric Analysis

The study was interested in the taking into accabatcompeting event (death) when
estimating the effects of Age, Sex, Primary Diagh@nd HIV Status on the hazard of
discharge for admitted TB treated patients. THscewas determined by observing the
estimates obtained from the CSH model and estimiates the SDH model, if the
estimates are similar between the models thenghignaption that is used when modeling

CSH of independence between the main event andetorgpevent holds (Dignam et al,
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2012). This would imply that death does not affestimation of the covariates on the

main event “Discharge”.

The probability of discharge within the study periwas not different for various groups
within the variables; HIV status, ART status anchdgr under the Pepe and Mori test.
Despite such results, the non-parametric curvedfor status and gender in Figure 4,
explain existence of some chance of differencesme to discharge between the levels
within these categorical variables. This sectiorespnts Cause-specific and Sub-
distribution models for time to discharge and titnedeath against the covariates age,
HIV status and gender. The variable ART status nedsncluded in the model due to its

insignificance.

4.4.2 Analysis of Covariate effects on events Disatge and Death

Estimates obtained from fitting the sub-distribativazard based on Fine & Gray (1999)
and the Cox cause-specific hazard models are gessenTable 4 and 5. These models
provide a good check for independence of eventgngsison made when implementing
cause-specific models. The Univariate and multatarisub-distribution hazard and

cause-specific models for main event dischargecantpeting event death are presented.
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Table 4: Comparison of Univariate CSH and SDH for gent “Discharge” and competing event “Death”

Model Effect Estimates
CSH Fine and Gray- SDH
Event Type
Discharge HR p- 95% SHR p- 95%
value Estimate CI value estimate CI
Age(in Years) 0.99 0.023 (0.99, 1.00) 0.985 <0.001 (0.98,0.99)
HIV Status Negative Reference Reference
Positive 0.963 0.716 (0.79,1.18) 0.894 0.257 (0.74,1.09)
Sex of Patient Male Reference Reference
Female 1.11 0.134 (0.97,1.28) 1.23 0.004 (1.07,1.41)
Death
Age(in Years) 1.02 <0.001 (1.012,1.032) 1.02 <0.001 (1.015,1.033)
HIV Status Negative
Positive 1.41 0.069 (0.97 2.05) 1.499 0.029 (1.04-2.15)
Sex of Patient Male
Female 0.92 0.499 (.72 1.17) 0.85 0.189 (0.67-1.08)
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Table 4 presents Univariate cause-specific hazaddsab-distribution estimates for event
discharge and competing event death. HIV status avagnificant effect on the sub-
hazard of discharge but was not significant for @88H model. Variable Age
significantly affects time to discharge among tH& Fatients for both modelgp<0.05).
Based on the p-value for variable age, it is regadrds a significant predictor, but the
confidence interval does contain a 1. In this instaage is still a significant predictor but
its effect is based after a large increase in @gerefore with a 20 years increase, older
patients were less likely to be discharged by 2%mhwmared to younger TB patients.
Patients Sex did not show a significant effectibig observed that female patients have
a 9% likelihood of being discharged than male pagievhen death is treated as censored

and 12.7% with death as a competing event.

Univariate CSH models and SDH models were agaiedfifor competing event death.

Table 4 presents the hazard and sub-hazard estimiat@ined. Similar to the CSH model

for event discharge, Age significantly affects taise-specific hazard for death. As age
increase, the cause-specific hazard of dying foBgatient in hospital increases by 2%.

In other terms, older TB patients are more likedydie while in hospital than younger

patients. For the CSH model HIV status and Sex wee significant predictors in

explaining hazard of death.

The Univariate SDH models in Table 4, showed thge significantly affected the
cumulative Incidence of discharge (via the subriistion hazard) with a sub-hazard of

0.985 (95% CI: 0.98-0.99) and p-value<0.001. Geiwlalso statistically significant with
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a sub-hazard of 1.23 (95% CI: 1.07, 1.41) and pes0.004. Older TB patients are 1.5%
less likely of being discharged with time. Femakignts are 23% more likely to be
discharged within the 6 months than male patidrtie.results show that for the univarate
CSH and SDH model, HIV status had no significafiéafon time to discharge from

hospital.
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Table 5: Comparison of Multivariate CSH and SDH forevent “Discharge” and competing event “Death”

Model Effect Estimates

Cox CSH Fine and Gray- SDH
Event Type Category HR p-value 95% SHR p- 95%
Estimate value estimate CI
Cl
Discharge
Age(Years) 0.99: 0.04( (0.99,1.01) 0.98¢ 0.001 (0.98,0.99
HIV Status Negative Referenc
Positive  0.94¢ 0.611 (0.78, 1.1€ 0.82¢ 0.04¢ (0.68,1.00)
Gender Male Referenc
Female  1.0¢ 0.24¢ (0.94, 1.2¢ 1.127 0.09i (0.98, 1.3C
Death
Age(Years) 1.0z <0.007 (1.01,1.03 1.0z <0.00I (1.013,1.2¢
HIV Status Negative Reference
Positive 1.2t 0.227 (0.87, 1.8C 1.2¢ 0.23¢ (0.87,1.78
Gender Male Referenc
Female 0.811 0.07¢ (0.64, 1.02 0.7t 0.015 (0.597, 0.9t
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A multivariate SDH model was fitted for covariatage, Sex and HIV status as presented
in Table 5. The results showed HIV status and ageewstatistically significant in
predicting the sub-hazard of discharge. HIV stéiag a sub-hazard ratio of 0.824 with a
p-value of 0.048. HIV positive patients had a 17.8%s sub hazard of being discharged
from hospital than HIV negative patients. Olderigrals again were 1.4% less likely to
being discharged with an increase in age by 20syéaariable sex turned out to be
statistically insignificant. A univariate CSH mddfr effect of ART on time to
discharge with death as a competing event waBRT status of a patient was found not
to be a significant predictor in modeling time tisaharge j(%l) = 8.39,p=0.079), A
SDH model of event discharge was fitted for ART t&aand it was found to be
statistically insignificant. Overall ART was nogsificant in explaining time to discharge

in the presence of a competing event death.

The multivariate model of CSH was fitted for evdigcharge and competing event death,
the estimates are shown in Table 5. The resultes shat HIV positive TB patients were
41% more likely to die in hospital than HIV negatipatients. Age was the only
significant factor affecting time to death in th&l& model. The CSH model for event
discharge showed no significant factor. Females8&@dess likely to die in hospital than
males, though this effect is not significant. ARill semains insignificant withp>0.05.

The Multivariate SDH model for competing event testhowed that age and HIV status
are statistically significant in explaining the culiative incidence of death. HIV positive
patients are 50% (SDH=0.499) more likely to didnaspital than HIV negative patients.

Once again older patients are more likely to didaspital within the admission time.
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ART status was again not statistically significamexplaining cumulative incidence of

death withp>0.05.

Two approaches of modeling can be used when congpesks are present: modeling
the cause-specific hazard and modeling the subhlibn hazard which takes into
account the competing risk. The results show ttiet, SDH estimates and the CSH
estimates were slightly different. This shows ttiet contribution of death in reducing
association between covariates and discharge waisnali This is in-line with various

studies that have shown that the covariate effesitey the CSH model or the SDH model
differ (Teixeira. et al., 2013) as shown in thigdst. A covariate not significant on hazard
of main event can be significantly associated wetimulative probability of that main

event if the covariate influences the hazard ofcthrapeting event (Dignam. et al., 2013).
Fine & Gray., (1999) also showed that the paramestimates for the CSH and SDH

model differ for the main event.

Several authors have differed on the type of mtmwleke to estimate effects of covariates
on the probability of the event of interest. Anderset al., (2012) pointed out that the
cause-specific hazards may be more relevant whenbitbiogical mechanism of the
disease is of interest, since it quantifies thenewate among the ones at risk of
developing the event of interest. One of the drakbdor the CSH model is that it fails
to directly link the effect of the covariates or t6IF of the event of interest. Many have
proposed use of the Sub-distribution hazard madekst directly links the covariates to

the cumulative incidence function. The results frins study are in agreement with
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various authors (Fine. &Gray., 1999; Kim., 2004m. et al., 2010), who stated that the
SDH model is a better model when studying data thablves competing risks.

Therefore, to meet the objective of identifying gmostic factors of discharge in the
presence of competing risks, the sub-distributianaind model was a better model than

the CSH model.

4.4.3 Comparison of Cumulative Incidence curves foPredictors based on Fitted
Models

In addition to the CSH and SDH models fitted, Cuattiuk Incidence curves for the SDH
models were plotted to compare the CI's for categowithin the variable Sex and HIV
status to clearly observe the differences. Figuaad 6 show the results after plotting the

Cl for sex and HIV status after fitting the SDH netsl
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Figure 5: Cumulative Incidence by Sex for events “Bcharge” and “Death”
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Figure 6: Cumulative Incidence by HIV Status for eents “Discharge” and “Death”

The results from the plots in Figure 5 and 6 repmésvhat has been obtained in the SDH
models. For the main event discharge, there’s ghtstilifference between the ClI's for
males and females. Females had a higher likelitdddking discharged than males. For
competing event death, at day 25, females had auhulative incidence of death than
males who had a 0.25 probability of dying withire ttudy period. The CI curves for the
variable HIV status for event discharge showedighsldifference in the CI's between
HIV positive and negative patients. For event deBiiv positive patients had a higher
probability of dying than HIV negative patientsesdenced from the CI curves. With a
0.15 probability of dying for HIV negative patienty day 25 and 0.25 probability of

dying for HIV negative patients.
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4.4.4 Factors Affecting LOS

Age and HIV status were identified as factors assed with a lower probability of
discharge occurring, and a higher probability catdeoccurring in the sub-distribution
multivariable regression modeling (Table 6). Tisisimilar to one study which showed
that Increasing age was associated with increaskgf death for TB patients (Roberts
& Daley, 2003). The results showed that older TBigmés were less likely to be
discharged from hospital than younger patientss Tlikely since older people are more
frail to diseases than younger patients, there imti@s are much weaker than for the
young people, therefore once they get infectedsosan as develop a disease it takes
time for them to recover. This finding is in-lineitiv findings from a study done by
Holmquist et al, 2007 which showed that elderlyigras were more likely to remain in
hospital than younger ones. The 2007 US Vital aedltH Statistics also reported that
older patients have a longer average length of. sthis can be explained since it is
commonly known that with advancing age, patientsl te& have more comorbid chronic
illnesses making them more vulnerable during hafipdtion (Marengoni. et al., 2008)
to this findings is a study done by (Celik. et &001), who mentioned that age, sex,
residence, institution at which the patient admditend insurance status determine

unnecessary stay but statistically do not affeetaberage length of stay.

Gender was significant for Univariate sub-distribnthazard model. Females were 23%
more likely of being discharge than males, whiclplied that as the days of admission
progressed, the probability of discharge for femalas higher than for males. This was

clearly observed from the Cumulative incidence earwhich showed females having a
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higher cumulative incidence of discharge than time#le counterparts. This is likely,
since most males might visit the hospital when \&ci unlike females who might visit
the hospital once they observe a discomfort. Ferrei al 2014 showed that increased
length of hospital stay was proportional to incregsge, especially > 40 years; and that

males were more likely to stay longer in hospitalrt females.

Another interesting result on covariates affecting probability of discharge taking into
account that a death can happen was comparisore&eti#lV positive TB patients and
HIV negative TB patients. This variable was sigrafit only in the sub-distribution
model. This is possible where more HIV patientsesigmced the competing event death
before a discharge and thus the effect of the campevent on the probability of the
main event was noticeable. In this case, if tha datolves a lot of the competing events
it is best to use the SDH model which takes intmaant effect of the competing event on
the probability of the main event(Teixeira. et &Q13). HIV positive patients were
17.6% less likely of being discharged from hosp#atl 50% more likely of dying in
hospital as compared to HIV negative patients. Thruite a high difference and would
need attention of medical researchers to find dut there is such a gap between these
two groups. Oliveira et al. (2009) in Brazil condéd that a high number of patients with
TB/HIV are expected in hospitals as admission pé&idn addition to what Oliveira et al,
found, according to the Government-funded reseamiducted in South Africa, HIV
positive patients stay in hospital four times lantan other patients on average. Malawi

is among one of the countries severely affectedhieydual epidemic of HIV and TB
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(WHO report, 2012). Therefore it is expected to éhamore HIV positive patients in

hospital than HIV negative patients.

4.5 Model Assumptions and Goodness-Of-Fit

This section presents results for assessment oéhaa:quacy. The proportional hazard
assumption for the Cause-specific model was peddrnCox Snell residual test was
performed to test goodness of fit and Martingakdwal plot were used to linearity for

covariate age. Time-varying covariates were usednmmodeling the sub-distribution

hazard model to test for proportionality assumpfmmnSDH model.

4.5.1 Proportional Hazards Assumption of the Causepecific Hazards for Event
Discharge and competing event Death

Table 6 and 7 present results obtained after cagryut a proportional hazards
assumption test on the full model for cause-spebifizard when the failure event for the
patient’'s was discharge and death respectively.

Table 6: The Schoenfold’s test for event Discharge

Covariate Rho Chi- P-value
Square

Age 0.01¢ 0.28 0.597¢

HIV Status: Positive 0.02¢ 0.61 0.433:

Sex: Female 0.09: 6.43 0.011:

Global test 7.5¢ 0.055:

The Schoenfeld’s global test assesses the assumibiad the hazards in the time-to
discharge and time to death (the Cox-proportioalahd models) are proportional over

time, i.e. testing whether effects of covariatestio@ risk remain constant over time.
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Specifically, the test computes a test for eacladate i.e. testing the null hypothesis that
the model fits the data. The alternative statesttieadata does not fit the data. A p-value

(p<0.05) means that the null hypothesis that the fits well cannot be rejected.

Table 7: The Schoenfold’s global test for Death

Covariate Rho  Chi-Square P-value
Age 0.004 0.00 0.955
HIV Status: Positive -0.072 1.32 0.251
Sex: Female -0.001 0.00 0.986
Global test 1.41 0.733

We observe that, at a 95% confidence level, théajldest for the CSH model of
discharge or death are not statistically signifiq@avalues > 0.05). This is evident from
Table 6 and 7 where the global tesp#0.055 andp=0.733 respectively Therefore we
accept the hypothesis of zero slopes, that meanastumption of constant proportional

hazard for the CSH model of discharge or deathshold

In regression analysis, it is recommended to lobkha graphs of the regression in
addition to performing the tests of non-zero slofdserefore, Fig. 7 presents the graphs
for the scaled Schoenfeld residuals for each espbep variable versus survival time.
The solid line is a smoothing-spline fit to thetpl®he graph clearly shows that the fitted
lines (slopes) for the scaled Schoenfeld residicalgach covariate are not significantly
different from zero (i.e. no systematic departufesm a horizontal line), that is

confirming the test results obtained in the Scheleinflobal test.
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4.5.2 Test for PH assumption of CSH model for everiDischarge”
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Figure 7: Schoenfold residual plots for each predtor for event discharge
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4.5.3 Test for PH assumption of CSH model for compieag event “Death”
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Figure 8: Schoenfold residual plots for each predior for event death

4.5.4 Time-Varying covariates

In order to test if the Sub-distribution hazard mlodatisfied the proportional hazard
assumption, a SDH model was performed with age, KBMtus as time-varying

covariates interacting with the analysis time. €a8land 9 present’s results that were

obtained after fitting the SDH models for failuneeat “Discharge” or “Death”




Table 8: Time varying covariates for failure event'Discharge”

Model Categories SHR 95% ClI P-Value
Main: HIV  Negative(referenc
Status

Positive 0.89¢ (0.68 1.1¢ 0.43:
Age 0.9¢ (0.98 .99¢ 0.03:
Time-Varying
HIV Status Negative(reference)

Positive 0.99¢ (0.99 1.01 0.37¢
Age 0.9¢ (0.999 1.0C 0.06i

The estimated hazard ratios are split into two gmies in Stata, hazard ratios for
variables with constant time and HR for time-vagyioovariates. From table 9, it is
observed that HIV status and Age did not signifiainteract with time >0.05),

therefore a conclusion can be made that the PHnggn for the Fine and Gray

regression is not violated.

Table 9: Time varying covariates for failure event'Death”

Model Categories SHR 95% CI P-Value
Main: HIV Negative(referenc
Status

Positive 1.72¢ (2.08, 2.7¢ 0.02:

Age 1.02¢ (1.01, 1.04 <0.00]

Time-Varying
HIV Status Negative(reference)

Positive 0.991 (0.97 1.01 0.367
Age 0.9¢ (0.999 1.0C 0.931

The same conclusion on the PH assumption can be foadhe SDH model with death
as the failure event, HIV Status and Age are mtiBcant, thus failing to reject the null

hypothesis of PH assumed. The PH assumption igiolated for this modelp>0.05).
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4.5.5 Checking Linearity for Age
To check if the variable age is appropriate in atiomous form, the Martingale’s

residuals were plotted against age. Figure 9 ptedka results for the analysis.

Smoothed Residual plots

T T T T
20 40 60 80
patient's age

® martingale lowess mg age

Figure 9: Testing Linearity on variable age.

There was an approximate linearity in the functicisam of the covariate age. This
indicates the need to transform the covariate Age minimal. This shows that the log-
hazard is slightly linear in age. Therefore, initidd to the un-violated PH assumption,

results of age on the cause-specific models werepaable too.
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4.5.6 Goodness of Fit Test

To evaluate the fit of the model the Cox-Snell dasis were used. If the model fits the
data well then the true cumulative hazard functionditional on the covariate vector has
an exponential distribution with a hazard rate oé.oFirst the Cox CSH models were
fitted for failure event discharge and competingerdv death. The Nelson-Aalen
cumulative hazard functions were plotted to complaeehazard functions to the diagonal
line. Goodness of fit was determined if the haZartttion follows the 45 degrees line,
implying that the cumulative hazard was approxinyaggponential with a hazard rate of

one.

Goodness of Fit for CSH model

T T

0 2 4 6

Cox-Snell residual

’ ® Nelson-Aalen cumulative hazard Cox-Snell residual ‘

Figure 10: Cox Snell residual plot for event “Disclarge”
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Goodness of Fit for event Death

T T T T T

0 5 1 15 2
Cox-Snell residual

’0 Nelson-Aalen cumulative hazard Cox-Snell residual ‘

Figure 11: Cox Snell residual plot for competing eent “Death”

Figure 10 and 11 shows that the hazard functiollewahe 45 degree line very closely
except for very large values of time especially Hazard event death. We can conclude
that the models fit the data well, that is to dhg, model adequately fits or describes the

data.

In the following chapter, we the conclusion, recoamaiations and study limitations are

presented.
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CHAPTER FIVE

CONCLUSION, RECOMMENDATIONS, LIMITATIONS AND AREAF OR

FURTHER RESEARCH

5.1 Conclusions

A comparison of the Cumulative Incidence (Cl) aminplement of Kaplan-Meier (1-
KM) showed that 1-KM produced higher probabilitytbé failure event discharge unlike
the Cumulative Incidence function. Since 1-KM caoiess the competing event death as
censored and calculates the probability of disaharighout taking into account the effect
of the competing event death. It is important$e the cumulative incidence function to

obtain survivorship of an event of interest in phesence of competing events.

The study showed that the influence of the covesiah the cause-specific hazard and on
the sub-distribution hazard (cumulative incidenai)he event of interest gave different
results. Age was the only significant covariateghe CSH model. While the SDH model
showed that age and HIV status had a significaiecebn the cumulative incidence of
discharge. The difference arises since the CSH htodks at the effect of covariates on
the event of interest only without regards to htwe tovariates act on the competing
event. Individuals who fail from a death are trelatis censored. While this is the case for
CSH models the SDH models measure the effect otdhariate on the specific event

cumulative probability (Dignam et al., 2012). Téstimates, between these two models
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were slightly similar showing a moderate dependdmate/een the failure event discharge
and the competing event death. The study showedtohalearly observe prognostic

factors on time to discharge in the presence ofpatimg events, it is best to use the SDH
model because covariate effect would take into @aetcthe effect of the competing event

on observing the main event.

The study revealed that factors Age and HIV statfisa patient were significant
predictors in determining hospital stay for TB pats. Older patients and HIV negative
patients were more likely to be discharged frompitat within a short stay of hospital
admission. The study showed a non-significant ef6¢cART on length of stay for TB
patients. The Univariate SDH model showed that fematients were more likely to be
discharged than males. Thus gender was considaredpmrtant factor affecting time to

discharge.

5.2 Recommendations
* It is important to use competing risk methods whandling data that involves
competing events. It is best to use the CIF othan tthe 1-KM to estimate the

survivorship function.

* If independence is observed between the event tefest and the competing
event, the Cause-specific hazard model can betosestimate effect of covariate
on the hazard of interest but the SDH model is hesestimate effects of

covariates on length of hospital stay. The usehef CSH model and the SDH
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model depends on the objectives of the study. Tihus important to report

estimates from both models, since at times bothhtig informative.

5.3 Area for Further Research

* The study proposes further research on competsigmodelling and handling
missing information.

* The study used non-parametric and semi-parameiar@dels on the data. It
proposes if parametric models are used especikibfe parametric models
which enable one to make vast assumptions on teiba hazard.

* The study proposes an extension of competing tiskepeated time to event
data.

* The study proposes a similar area of research $inga prospective study with
all necessary variables captured such as treatstatts and type, weights;
previous TB episode; pulmonary and extra-pulmoid@y previous opportunistic

infection.

5.4 Limitations

The study used a retrospective design, thus hadéoany information that was there,
thereby some important information might not beilalée. The data obtained from

SPINE did not capture variables such as Treatnpatient height, weight thus limiting

explanation of the factors affecting the healthcoate. The study incorporated missing
values of failure time, HIV status and ART statusiclt might have affected the results

of the analysis thereby distorting the real pictoféme to discharge. The study analyzed
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time to discharge for the TB patients based orr {i@mary diagnosis of TB but did not
consider if prolonged stay was affected by a seagndiagnosis unrelated to TB. The
data may have had some patients who may have bdabe database twice (as recurrent
or relapse patients). But the numbers were few ideriag the fact that the study
assessed a short time period. Such patients catlthen easily identified as identifiers

were removed from the database in order to maim@ifidentiality.
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APPENDICES
Appendix 1: Analysis Stata Commands

set nore off

cd "E:\ School \'t hesi s\ TB dat a"

capture |l og using New TB data.l og

use "E:\ School \t hesi s\ TB dat a\ New TB data. dta", clear
***Descriptive Statistics***

graph box ftinme, over(Genderl) over(H VSTATUS) asyvars
tabpri mary_di agnosi s

t absecondary_di agnosi s

tabstat age, by(Genderl)

tabstatdfti me, by(H VSTATUS)

***Cunul ati ve | nci dence Curves***
Stsetftine, fail (failtype=1)

stconpetcif = ci stderr=se upper=hi |ower=lo, conpet1(0) by
( HI VSTATUS)

gencif_H 'V _Negative = cif if failtype==1 & H VSTATUS ==

gencif_H V positive = cif if failtype==1 & H VSTATUS ==

twoway line cif_HV_ * _t, connect(J J) sort ytitle(Cunul ative
I ncidence) xtitle(Analysis tine in days) |pattern(shortdash)

st pepenori H VSTATUS, compet (0)

stconmpet Cl = ci Stderr=se Upper=hi Lower=lo, conpetl(0) by
( ARTSTATUS)

gencif _ART No = cif if failtype==1 & ARTSTATUS ==
gencif_ART Yes = cif if failtype==1 & ARTSTATUS ==
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twoway line cif_ART_* _t, connect(J J) sort ytitle(Cunul ative
I ncidence)xtitle(Analysis tinme in Days) |pattern(solid shortdash
dot)

st pepenori ARTSTATUS, compet (0)

stconpet ci = ci STderr=se UPper=hi LOwer=lo, conpetl(0) by
(Gender 1)

gencif_Gender _male = cif if failtype==1 & Gender 1==0
gencif_Gender _female = cif if failtype==1 & Gender 1==

twoway line cif_Gender * t, connect(J J) sort title(Cunulative

I nci dence by Sex) ytitle(Cumul ative Incidence) xtitle(Analysis
time in Days) |pattern(solid | ongdash) |egend(lab(l "Male") Iab(2
"Femal e") stack)

st pepenmori Genderl1, conpet (0)

stset, clear

*********Con-parison Of l_KM VS CI*************
stsetftine, fail (failtype=1)

sts gen KM-s

gen Conpl emrent = 1-KM

st conpet Cum nc=ci, conpet1(0)
gen Cl=Cumnc if failtype==

twoway |ine Conplenment Cl ftine, ytitle("Probability")
| pattern(dash | ongdash) | col or(green orange)

stset, clear

***x%* St andard Cox PH nodel ******
stsetftine, fail (failtype)
Xi:stcox age

Xi : st coxi . Gender

xi : st coxi . H VSTATUS

Xi:stcox age i.Genderl i.H VSTATUS
est at phtest, detail

stset, clear
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***x%** Cause- Speci fi ¢ Hazards Mbdel for event Discharge******
Stsetftine, fail (failtype==1)

Xi:stcox age

Xi : st coxi . Gender

xi : st coxi . H VSTATUS

Xi:stcox age i.Genderl i.H VSTATUS

*xxx*kxxxTagt for PH assunption*x*x*xx*x

est at phtest, detail

st pht est, pl ot (H VSTATUS)

st pht est, pl ot (Genderl)

*rxxxxkrnpdel selection criterion**x**x**x*
estatic

stset, clear

**x*x%kx* Cause- Specific Hazards Mddel for event Death********
Stsetftine, fail (failtype==0)

Xi:stcox age

Xi : st coxi . Gender

xi : st coxi . H VSTATUS

Xi : st coxi . ARTSTATUS

Xi:stcox age i.Genderl i.H VSTATUS

*xxxkxxxTagt for PH assunption*x*x*xx*x

est at phtest, detail

st pht est, pl ot (H VSTATUS)

st pht est, plot(Genderl)

xxxxxxxrxtpdel sel ection Criteriat**x**x*txsx*
estatic

stset, clear

****Fine and Gray nodel for event discharge and conpeting event
deat h****
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stsetftine, fail (failtype==1)

Xi:stcrreg age, conpete(failtype==0)

Xi:stcrreg i.Genderl, conpete(failtype==0)

Xi:stcrregi.H VSTATUS, conpete(failtype==0)

Xi:stcrreg age i.Genderli.H VSTATUS, conpete(failtype==0)
*xxxkxxxTagt for PH assunption*x*x*xx*x

Xi:stcrreg age i.Genderl i.H VSTATUS
conmpete(failtype==0)tvc(age H VSTATUS)

estatic //nodel selection criteria
stset, clear

**** Fine and Gray nodel for event death and conpeting event
di schar ge****

stsetftine, fail (failtype==0)

Xi:stcrreg age, conpete(failtype==1)

Xi:stcrreg i.CGenderl, conpete(failtype==1)

Xi:stcrregi.H VSTATUS, conpete(failtype==1)

Xi:stcrreg age i.CGenderl i.H VSTATUS, conpete(failtype==1)

Xi:stcrreg age i.Genderl i.H VSTATUS
conpete(failtype==1)tvc(age H VSTATUS) //Test for PH assunption

estatic // nodel selection criteria

stset, clear

xxxkxxrxxrxsk Npdel Di AQNOSE] CS** ¥ ** %k * %% kkkx

Kk kk kR RARER AR R R R % OANESS OF Fi t T @St *** %k kkkkkkkkkkkx
**xxx%xfor event di scharge****x*x*

stsetftine, fail (failtype==1)

Xi: stcox age i.CGenderl i.H VSTATUS, ngal e(ng)
predi ct coxsn, csnel

stsetcoxsn, fail (failtype==0)

sts generate H=na

twoway (scatter coxsn H) (line coxsncoxsn)
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stset, clear

xxxk**f Or event deat QF*rEErkExk
drop ngy

dr opcoxsn

stsetftine, fail (failtype==0)

Xi: stcox age i.CGenderl i.H VSTATUS, ngal e(ng)
predi ct coxsn, csnel

stsetcoxsn, fail (failtype==1)

sts generate H=na

twoway (scatter coxsn H) (line coxsncoxsn)
stset, clear

**xxx%kx*xxChecking Linearity for Age**x*x*xxx
stsetftine, fail (failtype==1)

Xi: stcoxi.H VSTATUS i. Genderl, ngal e(ng)
twoway (scatter ng age) (|l owess ng age)

stset, clear
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Appendix 2: Summaries of Primary Diagnosis

Primary diagnosis Frequency| Percent
?ART FAILURE ?ABDO TE 3 0.2t
?TB 2 0.1¢
ANAEMIA;UNKNOWN TB 1 0.0¢
ASPIRATION TUBERCULOSI 1 0.0¢
DRUG RESISTANT TE 2 0.1€
EPTE 4 0.3
EPTB RELAPSI 2 0.1€
MENINGITIS SUB-ACUTE PRESUMEL 13 1.07
TUBERCULO

PERIPHERAL NEUROPATHY DRUC 1 0.0¢
RELATED — TB

PLEURAL EFFUSION FPT! 1 0.0¢
PLEURAL EFFUSION Tt 3 0.2t
PNEUMONIA PTE 1 0.0¢
PNEUMONIA TB 1 0.0¢
PTB RELAPSI 1 0.0¢
RENAL TUBERCULOSIS 2 0.1¢€
SEPSIS TI 1 0.0¢
B 2 0.1€
TB SPINE 1 0.0¢
TUBERCULOSIS 38 3.11
TUBERCULOSIS ?DISSEMINATED T 1 0.0¢
TUBERCULOSIS ?TBN 1 0.0¢
TUBERCULOSIS ABDOMINAL 15 1.2¢
TUBERCULOSIS ADENTI 1 0.0¢
TUBERCULOSIS ASCITE 3 0.2t
TUBERCULOSISASCITIS 1 0.0¢
TUBERCULOSIS BONE TUMOUI 1 0.0¢
TUBERCULOSIS DISSEMINATEI 317 25.9¢
TUBERCULOSISEPT 13 1.07
TUBERCULOSIS EPTI 67 5.4¢
TUBERCULOSIS EPTB RELAPS 2 0.1€
TUBERCULOSIS EPTB PIEURAI 1 0.0¢
EFFUSION
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TUBERCULOSIS EXTRAL PULMONALY 1 0.0¢
TUBERCULOSIS INFECTIVE 1 0.0¢
TUBERCULOSIS IR 1 0.0¢
TUBERCULOSIS LYMPHADENTIS 1 0.0¢
TUBERCULOSISM D F 1 0.0¢
TUBERCULOSIS MACROCYTIA 1 0.0¢
ANAEMIA

TUBERCULOSIS MALIGNANCY 1 0.0¢
TUBERCULOSIS MARIGNANCY 1 0.0¢
TUBERCULOSIS MDF 3 0.2t
TUBERCULOSIS MELIGNANCY 1 0.0¢
TUBERCULOSIS MENINGITIS 4 0.3
TUBERCULOSIS MILIARY 63 5.1¢€
TUBERCULOSIS OTHEI 9 0.72
TUBERCULOSIS PENCORDINAAL 1 0.0¢
EFFUSION

TUBERCULOSIS PERICARDIA| 1 0.0¢
TUBERCULOSIS PERICARDIAL 1 0.0¢
EFFUSSION

TUBERCULOSISPERICARDIAL 1 0.0¢
EFFISSION

TUBERCULOSIS PERICARDIAL 2 0.1¢€
EFFUSSION

TUBERCULOSIS PERICARDIAL 2 0.1¢€
EFFUSION

TUBERCULOSIS PIEURAL EFFUSIO 1 0.0¢
TUBERCULOSIS PLEURAL EFFUSIO 8 0.6¢€
TUBERCULOSIS PLEURAL EFFUSSIC 5 0.41
TUBERCULOSIS PLEURALEFFUSION 1 0.0¢
TUBERCULOSIS PLEURAL EFFUSION 2 0.1¢€
TUBERCULOSIS PLEURAL EFFUSSSIC 1 0.0¢
TUBERCULOSIS PTI 1 0.0¢
TUBERCULOSIS PTB RELAPS 14 1.1E
TUBERCULOSIS PTB RELAPS 2 0.1¢€
TUBERCULOSIS PULMONAR? 46¢| 3844
TUBERCULOSIS PULMONARY RELAPS 1 0.0¢
TUBERCULOSIS RECUREN 1 0.0¢
TUBERCULOSIS RELAPS 6 0.4¢
TUBERCULOSIS RELAPSE PT 2 0.1¢€
TUBERCULOSIS RELAPSE PTB SMEAI 1 0.0¢
P

TUBERCULOSIS SMEAR NE( 1 0.0¢
TUBERCULOSIS SMEAR NEGATIVI 1 0.0¢
TUBERCULOSIS SPINAI 17 1.3¢
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TUBERCULOSIS TBCXR

1 0.0¢
TUBERCULOSIS TUBERCULOUS 83 6.€
MENINGITIS
TUBERCULOSIS TUBERCULOUS 3 0.2¢
PERICARDITIS
Total 1,22C 10C
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Appendix 3: Summaries of Patient’'s Secondary Diagrsis

Secondary diagnosis FrequengyPercent
TUBERCULOSIS 1,186 89.58
ANAEMIA 1 0.08
ANAEMIA MACROCYTIC IRON 1 0.08
DEFICIENCY

ANAEMIA MICROCYTIC CHRONIC 2 0.15
DISEASE

ANAEMIA NORMOCYTIC CHRONIC |2 0.15
DISEASE

ANAEMIA UNKNOWN CHRONIC 3 0.23
DISEASE

ANAEMIA;NORMOCYTIC OTHER 1 0.08
ANAEMIA;UNKNOWN 1 0.08
ANAEMIA;UNKNOWN OTHER 1 0.08
ANAEMIA;UNKNOWN 3 0.23
PANCYTOPEMIA

ANAEMIA;UNKNOWN SEVERE 2 0.15
ANGINA 3 0.23
ART FAILURE 3 0.23
CANCER UNKNOWN PRIMARY 3 0.23
CANDIDIASIS OESOPHAGEAL 3 0.23
CANDIDIASIS ORAL 3 0.23
CAP 2 0.15
CHEST INFECTION 1 0.08
CIRRHOSIS 4 0.30
DIABETES MELLITUS 1 0.08
HYPOGLYCAEMIA

GASTROENTERITIS ACUTE 4 0.30
GASTROENTERITIS CHRONIC 2 0.15
HEART FAILURE CONGESTIVE 1 0.08
CARDIAC FAILUR

HTN 1 0.08
HYDROPNEUMOTHORAX 1 0.08
HYPERTENSION OTHER 2 0.15
KAPOSI'S SARCOMA CUTANEOUS 3 0.23
LUNG CANCER OTHER 1 0.08
LYMPHADENOPATHY 1 0.08
MALARIA CEREBRAL 2 0.15
MALARIA UNCOMPLICATED 2 0.15
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MALIGNANCY 1 0.08
MALNUTRITION 1 0.08
MENINGITIS BACTERIAL CLINICAL |3 0.23
MENINGITIS CRYPTOCOCCAL 1 0.08
MENINGITIS;BACTERIAL OTHER 1 0.08
PANCREATITIS OTHER 3 0.23
PCP 1 0.08
PHARYNGITIS 1 0.08
PID 1 0.08
PLEURAL EFFUSION PRESUMED DUE 1 0.08
TO KAPOSI

PNEUMONIA 3 0.23
PNEUMONIA ASPIRATION 2 0.15
PNEUMONIA BRONCHOPNEUMONIA | 2 0.15
PNEUMONIA CAP 3 0.23
PNEUMONIA COMMUNITY 2 0.15
ACQUIRED

PNEUMONIA LOBAR 2 0.15
PNEUMONIA OTHER 2 0.15
PULMONARY EFFUSION 2 0.15
SCHISTOSOMIASIS OTHER 1 0.08
SCHIZOAFFECTIVE DISORDER 3 0.23
SEPSIS 2 0.15
SEPSIS NTS ISOLATED 12 0.91
SEPSIS OTHER 2 0.15
SEPSIS S PNEUMONIAE ISOLATED 1 0.08
SEPSIS TYPHOID 1 0.08
SEVERE IMMUNOSUPRESION 3 0.23
TB ADENITIS 1 0.08
TB BACTERAEMIA 1 0.08
TB IRIS 3 0.23
TUBERCULOSIS DISSEMINATED 2 0.15
TUBERCULOSIS EPTB 1 0.08
TUBERCULOSIS PULMONARY 5 0.38
TUBERCULOSIS RELAPSE 2 0.15
TUBERCULOSIS RELEPSE 1 0.08
TYPHOID 4 0.30
ULCER GASTRIC 1 0.08
Total 1,324 100.00
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Appendix 4: Certificate of Ethical Approval

(See next page)
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