
 

 

MODELING LENGTH OF HOSPITAL STAY FOR TUBERCULOSIS T REATED 

IN-PATIENTS AT QUEEN ELIZABETH CENTRAL HOSPITAL:  

A COMPETING RISK PERSPECTIVE 

 

 

 

 
MASTER OF SCIENCE (BIOSTATISTICS) THESIS 

 
 

 

 

HALIMA SUMAYYA TWABI 

 

 

 

 

 

UNIVERSITY OF MALAWI 

CHANCELLOR COLLEGE 

 

 

 

 

 

FEBRUARY, 2016 



 

 

MODELING LENGTH OF HOSPITAL STAY FOR TUBERCULOSIS T REATED 

IN-PATIENTS AT QUEEN ELIZABETH CENTRAL HOSPITAL:  

A COMPETING RISK PERSPECTIVE 

 

 

 

MASTER OF SCIENCE (BIOSTATISTICS) THESIS 

 

 

By 

 

HALIMA SUMAYYA TWABI 
Bachelor of Science- University of Malawi 

 
 
 

Thesis submitted to the Department of Mathematical Sciences, Faculty of Science, in 

Partial fulfilment of the requirements for the degree of Master of Science (Biostatistics) 

 

 

UNIVERSITY OF MALAWI 
CHANCELLOR COLLEGE 

 
 
 
 
 
 

FEBRUARY, 2016 



DECLARATION 

 

I the undersigned hereby declare that this thesis/dissertation is my own original work 

which has not been submitted to any other institution for similar purposes. Where other 

people’s work has been used acknowledgements have been made. 

 

 

HALIMA SUMAYYA TWABI 
___________________________ 

Full Legal Name 
 
 

_______________________________ 

Signature 

 

 

 

______________________________ 
Date



CERTIFICATE OF APPROVAL 
 

The undersigned certify that this thesis represents the student’s own work and effort and 

has been submitted with our approval. 

 

 

Signature:______________________________Date:____________________________ 

Mavuto Mukaka, PhD (Senior Lecturer) 

Main Supervisor 

 

Signature: ______________________________Date:___________________________ 

Jimmy Namangale, PhD (Associate Professor) 

Co-supervisor 

 

 

Signature: ____________________________Date:_____________________________ 

Tsirizani Kaombe, MSc (Lecturer) 

Programme Coordinator



 

 

 
 
 

DEDICATION 
 

 

To my late Aunt Zahra, late Grandfather Imran and late Grandma Apwaja. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

ACKNOWLEDGMENTS 

 

I would like to thank whole-heartedly my supervisor Dr Mavuto Mukaka, for his 

guidance, support, constructive ideas, comments and his time and knowledge on my 

thesis work. I really appreciate the encouragement and his critiques on my work which 

has helped me structure the entire thesis with understanding. 

 

I would also like to thank Dr Danielle Cohen for her constructive comments on the 

clinical aspects of the research. Without her help, this work might have been incomplete 

and would not have been approved by the research ethics committee. I appreciate her 

assistance 

I am also indebted to Dr Ingrid Peterson and the entire SPINE team for providing data 

used in the research. Her quick response to my misunderstandings and guidance on 

SPINE data was marvelous. 

I would also like to thank Dr Namangale, Mr. Tsirizani Kaombe for their assistance when 

I needed help in various aspects of the thesis work. Their comments on my thesis have 

helped me understand some aspects that were challenging to grasp. 

I sincerely thank God for guiding me through this work Special thanks to mum, dad, 

grandmother and my loving husband Shaffi for your support throughout my work. Thank 

you for giving me strength and encouragement. 



vi 

 

 

 

ABSTRACT 

 

A retrospective cohort study was done on adult TB in-patients database from Queen 

Elizabeth Central Hospital (QECH) SPINE database to identify factors explaining time to 

discharge from hospital while accounting for a competing event: death. The study aimed 

to apply and compare competing risk models on TB data. Semi-parametric Cause-specific 

hazards (CSH) and Sub-distribution hazard (SDH) models were applied to model the 

effect of HIV status, age, and Sex in relation to death or discharge from hospital. Test for 

model assumptions and diagnostics were conducted. Findings showed that the SDH 

explained best the effect of the covariates to the probability of a patient being discharged 

or dying. Further the main factors affecting length of hospital stay among TB in-patients 

were age and HIV Status. HIV positive patients were 17.6% less likely to be discharged 

from hospital compared to HIV negative patients (p=0.048) and an increase in age, 

resulted in 2% decrease of chances of discharge. It is important to use the cumulative 

incidence function for calculating probability of an event. The SDH model was a better 

model when studying data that involves competing risks. To meet the objective of 

identifying prognostic factors of discharge in the presence of competing risks, the sub-

distribution hazard model explained better the covariate effects on event discharge than 

the CSH model. The findings emphasize the importance to use competing methods which 

best meet the study objectives. 
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CHAPTER ONE 

 

INTRODUCTION 

 

1.1 Background Information 

Tuberculosis remains a major public health problem worldwide. It is estimated that one-

third of the world population is infected with Mycobacterium tuberculosis (WHO., 

2010).The severity of tuberculosis in the world has worsened with social inequality, the 

advent of acquired immunodeficiency syndrome (AIDS) and migratory movements 

between countries. Thus, it’s still a public health challenge in most countries of the world 

(WHO., 2012). In 2013, WHO reported that 9 million people around the world were sick 

of TB and there were around 1.5 million TB-related deaths worldwide. 

 

Globally interventions and measures such as the Directly Observed Therapy-Short course 

(DOTS), and International Stop TB strategy aimed at eliminating TB have been 

implemented. These efforts have led to a successful reduction in TB cases world-wide. 

Globally, a total of 56 million people were successfully treated and as a result, TB 

incidence has fallen by 2% each year. Although this is the case, the global burden of TB 

remains high especially in most developing countries (WHO., 2013). 
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1.1.1 Case of TB in Malawi 

In Malawi TB is a major public health problem with the incidence of all forms of TB 

being estimated to be 164 per 100,000, as reported by in 2012. The report also estimated 

that in Malawi there were an estimated 29,000 new cases of TB (all forms) in the year 

2011, and approximately 18,000 of these were HIV positive. A long term study by WHO 

shows that TB funding in low and middle income countries grew from 2002 to 2011. 

Despite the increment in funding, it is still inadequate in comparison to the magnitude of 

the problem. The majority of countries that have a heavy TB burden are classified as low 

income countries (GDP below 760 US dollars) (WHO., 2013). Malawi is among the 10 

poorest countries in the world (UN Development Report) and has currently been ranked 

as the first poorest country in the world by data from the World Bank in 2015. 

 

 In Malawi TB has had a great impact on the socio-economic well-being of the country. It 

is reported that on average, patients spend 29 US dollars to access facilities offering 

diagnostic and treatment services for TB (Kemp. et al., 2007). Although this is the case, 

(WHO., 2013) reports that the cost per person successfully treated for TB with first line 

drugs is in the range of 100 USD to 500 USD in all countries with high burden of TB. In 

view of these high costs, there is a need to understand different aspects surrounding care 

for TB patients and this includes studying factors related to hospitalization. 

 

Since TB-infected patients  who are admitted to the hospitals tend to have more serious 

clinical conditions, the determination of their treatment outcomes carries a great clinical 

and public health importance (Zetola. et al., 2014). Equally important, is an analysis of 
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the patients’ length of stay (LOS) in hospital as this can guide future resource allocation 

for the treatment of such patients. 

 

1.1.2 Length of Hospital Stay 

Determination of factors that increase LOS may provide information that can help to 

reduce costs and improve delivery of care (Collins. et al., 1999).Most studies on length of 

hospital stay have shown that LOS is an important measure of resource utilization 

(Frietas. et al., 2012) and it can partly explain hospital costs as some studies have shown 

that there is a strong correlation between LOS and hospital costs. Thus, understanding 

length of stay is vital for planning and funding services (Hinchliffe. et al., 2013).  

  

Understanding LOS for Malawi, a developing country which provides free primary, 

secondary and tertiary health care to its citizens, would be very helpful since funding 

health services is costly and thus there is a need to understand ways in which the cost for 

hospital services could be managed better. Also understanding LOS would help in 

planning for the hospital services that are provided to patients, for example in terms of 

bed occupancy. It would provide the hospital an overview of how the TB wards are 

operating in terms of space and quantity of medical items used. 

 

In Malawi, patients are diagnosed for Tuberculosis for free and are mostly treated as out-

patients. This developed because before 2001, TB wards were congested with admitted 

TB patients on treatment. In urban Malawi, the bed occupancy rates were between 140 to 

160%. These rate have gone down since 2002 when the national policy changed to giving 
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patients options of receiving initial phase of treatment from hospital wards or health 

centers or to have it provided by guardians at their homes (Nyirenda. et al., 2003).TB 

patients are only admitted to hospital care when either their clinical condition warrants it 

and / or access to community-based care is not available. It is equally important that TB 

patients be discharged for outpatient care at clinics as soon as they can be managed 

effectively in the community (Tamiru & Haidar., 2010). 

 

1.2 Problem Statement 

There is large body of literature on competing risk models for analysis of time-to-event 

data in medical research (Dignam. et al., 2012; Hinchliffe. et al., 2013; Kim., 2007; Lim. 

et al., 2010). Studies in the past have employed different statistical techniques such as 

Cox regression model, Logistic regression and Chi-square test to study Length of hospital 

stay. A few papers have appeared in the application of advanced statistical models on 

LOS such as the generalised linear mixed model (GLMM). For example a hierarchical 

Poisson regression model for maternity LOS (Lee. et al., 2001) was developed to capture 

the inherent correlations of patients clustered within hospitals. A finite mixture regression 

model with random effects and its application to neonatal hospital LOS has been 

proposed by(Yau. et al., 2003), leading to the development of the class of finite mixture 

GLMM where heterogeneity in LOS has been modeled. Despite these studies and papers 

on LOS, a few studies have looked at modeling length of hospital stay for TB patients 

and have often not accounted for competing events.  
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In survival analysis an individual who experiences an event of interest within a specified 

observation period is said to have an event, otherwise the individual is said to be censored 

if no such event is experienced in that period by the end of the study. When more than 

one event is considered (e.g., death from any of several causes), those events are known 

as competing risks or competing events(Coviello. et al., 2004;  Kleinbaum & Klein, 

2005). As Gooley (1999) stated, ignoring competing risks and applying standard survival 

models to a dataset that includes competing events leads to biased estimates thus leading 

to biased conclusion. Therefore there is need to account for competing risks where they 

exist.  

 

In the study of length of stay for TB patients, death while in hospital is one of the well-

known competing events since those who die do not have a chance to be discharged even 

if the observation time was extended. Failure to account for this would lead to invalid 

estimates of time to discharge. Therefore, this study aimed to estimate time to discharge 

while accounting for competing risk death. 

  

Hospitalizing TB patients can be challenging especially in countries like Malawi, with 

limited health care resources or appropriate in-patient facilities (Dehghani. et al., 2011). 

An analysis of length of in-patient hospital stay and factors affecting hospitalization with 

an account of competing events is important in assessing and predicting the consumption 

of hospital resources which is an important tool in hospital planning for resource 

allocation. As stated by Hinchliffe et al, 2013, understanding length of hospital is 

important for planning and funding of hospital services. Therefore the study aims at 
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modelling the LOS for TB treated patients to observe the length of time TB patients 

remain in hospital and factors that influence the average length of stay of TB patients in 

Malawi using models that take competing risk into account; and choose the best model 

that explains the associated factors of length of hospital stay. 

 

1.3 Objectives of Study 

The following are the study objectives: 
 
1.3.1 Broad Objective 

To apply competing risk models on time to discharge for adult TB in-patients at QECH 

with death as a competing event. 

1.3.2 Specific Objectives 

1. To estimate and compare the  Cumulative Incidence Function with the Kaplan 

Meier Estimator 

2. To compare the Cumulative Incidence curves in the presence of the competing 

risk for the categorical variables; HIV Status, ART Status, Gender. 

3. To fit and compare the Cause-Specific Hazard and Sub-distribution hazard 

models. 

4. To identify prognostic factors affecting time to discharge in the presence of event 

death 
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1.4 Research Questions 

The following were the research questions for the study: 
1. Do the cumulative incidence curve and the Kaplan Meier curve give different 

probabilities to discharge? 

2. Which model (Sub-distribution hazard or Cause-Specific Hazard models) best 

explains time to discharge for TB patients? 

3. What are the factors that affect time to discharge for TB in-patients at QECH? 

 

1.5 Significance of the Study 

Examining length of hospital stay for TB patients will provide an insight into this public 

health problem and will contribute to the country’s base knowledge of factors affecting 

length of hospitalization of TB patients. In addition, the study contributes to available 

work done in the field of survival analysis when modeling survival time while accounting 

for competing events. Furthermore results of the research will help researchers 

understand appropriate competing risk methods to use when studying length of Hospital 

stay or epidemiological diseases. 

 

The subsequent chapters present the Literature review of the study area, the methodology 

used in the study, the results and discussion of the study and conclusion and 

recommendation(s). 
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CHAPTER TWO 

 

LITERATURE REVIEW  

 

This section provides literature review on survival analysis, survival function, hazard 

function, hazard ratio, Kaplan Meier (KM) methods, tests for survival analysis, Models in 

survival analysis, handling of time-varying covariates and competing risks approach. 

 

2.1 Determinants of Length of Hospital Stay 

Different studies have shown that age, HIV Status, ART therapy are some of the risk 

factors associated with hospital stay. A study done by Ferreira et al (2014) on factors 

associated with hospitalization of tuberculosis patients showed that increased length of 

hospital stay was proportional to increasing age, especially > 40 years; male; single; low 

education; tuberculosis/human immunodeficiency virus (TB/HIV) co-infection; previous 

TB episode; pulmonary and extra-pulmonary TB; previous opportunistic infection. They 

used an integrative literature review, using the MEDLINE, LILACS, and ISI databases, 

besides the SciELO collection, whose descriptors were: “tuberculosis”, “hospital”, 

“hospitalization”, “risk factors”, and “associated factors. Their study did a comprehensive 

literature review on factors associated with hospital stay. Despite reviewing different 

studies that have looked at this area of study, most of the studies focused on whether a 

patient was discharged or not. As a result methods such as the logistic regression, Chi-

Square test of association, were used to determine associated factors of length of stay.  
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A retrospective study on Factors Associated with Length of Hospital Stay among HIV 

Positive and HIV Negative Patients with Tuberculosis in Brazil done by Ferreira et al 

(2013) used a Chi-square test or a T-test at a 5% significance level to obtain the 

associated factors. The study showed that there were no significant differences in the 

length of hospital stay in HIV positive patients but found that minimum wages, 

pulmonary tuberculosis form, negative smear test or no information in this regard, initial 

6-month treatment scheme,  were associated to prolonged hospital stay in HIV positive 

patients. Another study in Brazil also concluded that a high number of patients with 

TB/HIV are expected in hospitals as admission patients (Oliveira. et al., 2009). 

 

Tuberculosis is highly associated with HIV status of a patient. Many retrospective studies 

have shown that tuberculosis is associated to HIV. A retrospective study done in 

Lilongwe, Malawi showed that HIV co-infection was associated with a slightly poorer 

TB treatment outcome. Only 38% of the TB/HIV new smear positive co-infected patients 

were on ART. Those on ART had successful TB treatment outcomes compared to those 

not on ART (Tweya. et al., 2013). Information on ART is very important when modeling 

survival of TB patients after admission, since there is a relationship between ART and 

TB treatment outcome, thus it needs to be considered when studying factors that affect 

length of hospitalization for TB patients. 

 

The study by Tweya et al (2013), further found that both HIV and ART status influenced 

TB treatment outcomes. This explains that length of hospitalization of a TB treated 

patient is dependent on the HIV or ART status as based on the study. Those with HIV 
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who are not on ART are likely to have a poor TB outcome (are likely to have a high 

LOS). Therefore when studying TB patients who are HIV reactive it is very important to 

consider whether the patients are on ART or not and determine if ART contributes to the 

length of hospital stay of that patient. 

 

2.2 Common Terms Used in Survival Analysis 
 

2.2.1Censoring 

Time to event analyses test hypotheses about the occurrence of an event of interest in two 

or more groups with data that are often subject to censored observations. Censoring 

occurs when information on time to outcome event is not available for all study 

participants. Three reasons of censoring are: when a person is lost to follow-up during the 

study period, and when a person withdraws from the study because of death (if death is 

not the event of interest) or some other reason like issues concerning ethics for example 

having adverse drug reaction. Censoring is of two types, right and left (Leung. et al., 

1997). Right censored data is mostly encountered which involves lost to follow up. Left 

censored data can occur when a person’s survival time becomes incomplete on the left 

side of the follow up period. Censored observations may not only be due to losses to 

follow-up or administrative cessation of the time period of consideration but can also be 

due to events not of interest. This situation is problematic if these “other events” preclude 

observation of the primary event under consideration. Experiencing a competing event 

acts as a right censor on the primary event. Because of this extra censoring, it is often 

useful to estimate and compare cumulative event probabilities of a specific event, rather 

than of all events as a whole.  
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Censoring in survival analysis should be “non-informative,” i.e. participants who drop 

out of the study should do so due to reasons unrelated to the study. Informative censoring 

occurs when participants are lost to follow-up due to reasons related to the study, e.g. in a 

study comparing disease-free survival after two treatments for cancer, the control arm 

may be ineffective, leading to more recurrences and patients becoming too sick to follow-

up 

 

2.2.2Survival Function 

Let T be a non-negative random variable denoting the time to a failure event. The 

survivor function S(t) gives the probability that a person survives longer than some 

specified time t: that is, S(t) gives the probability that the random variable T exceeds the 

specified time t (Kleinbaum & Klein, 2005). In other words the survivor function also 

known as survivorship function is simply the reverse of the cumulative probability 

function of T. Where the cumulative distribution is given by  

                                   	���� = Pr�	 < �� = � ��
��
�
�                 (1) 

and the survivor function is given by 

                                       ���� = 1 − ���� = Pr�	 ≥ ��                   (2) 

It is simply the probability that there is no failure event prior to time t. The function is 

equal to 1 at t=0 and decreases toward zero as t goes to infinity. Its probability density 

function is expressed as; 

                                    ���� = �����
�� = ���������

�� = −� ′���																			(3) 
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2.2.3 Hazard Function 

The hazard function also known as the conditional failure rate is the instantaneous rate of 

failure. It is the limiting probability that the failure event occurs in a given interval, 

conditional upon the subject having survived to the beginning of that interval, divided by 

the width of the interval (Cleves. et al., 2010). In simple terms it is the probability that an 

individual encounters an event of interest at time t, conditional on having survived to that 

time. If t is a continuous function with density function f, then the hazard function is 

defined by: 

                               ℎ��� = lim∆�→� "#	��$∆�%&%�|&%��∆� = (���
����                       (4) 

 

It can vary from zero (no risk at all) to infinity (certainty of a failure at that instant). It is 

different from survival function because it specifies the failure event while the survivor 

function talks of the survival rate past a time t (Kleinbaum & Klein, 2005). The 

importance of the hazard function is that it provides insight into conditional failure rates. 

It may also be used to identify a specific model form. 

 

2.2.4 Hazard Ratio (HR) 

In survival analysis the hazard ratio is the ratio of the hazard rates corresponding to the 

conditions described by two levels of an explanatory variable. The hazard ratios represent 

instantaneous risk over the study time period. A hazard ratio of 1 corresponds to equals 

hazards between the two groups (i.e. treatment arm and control arm). While a hazard 

ratio of 2 implies that at any time twice as many in the treatment group are having an 

event proportionately compared with the control group (Deurden., 2009). 
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2.2.5 Kaplan-Meier (KM) Estimate 

The Kaplan Meier estimator is a non-parametric estimate of the survivor function S(t), 

which is the probability of survival past time t, or the probability of failing after t. It is a 

popular method because it requires very weak assumptions (assumes no form of 

distribution) but utilizes information content of both fully observed and right censored 

data. Suppose that k individuals have experienced an event of interest, such as death in a 

group of individuals. If we let 0 ≤ �� < ⋯ < �, < ∞	 be the observed ordered death 

times. Let kj be the number of individuals who are at risk at t(k). Let dj be the number of 

observed deaths at tj, j= 1…k. Then the Kaplan Meier estimate at any time t is given by 

                                          �.��� = ∏ 012��212 34|�25�              (5) 

where nj is the number of individuals at risk at time tj, and the product is overall observed 

failure times less than or equal to t (Kaplan. & Meier., 1958). The estimator is a step 

function that changes values only at the time of each.  

 

2.2.6 Cumulative Incidence Function 

A competing risk must be accounted for in estimating failure rates. The best approach of 

assessing failure rates is by using the cumulative incidence curve to estimate the 

probability of failures actually observed in patients who are subject to censoring by 

competing risk (Dignam et al., 2012). 

 

The cumulative incidence, which is closely related to the survivor function encountered 

in standard survival analysis,  denotes the expected proportion of patients with a certain 

event over the course of time (Latouch. et al., 2007). The CIF at time t for cause i is the 
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probability of failing from cause i before (or up to) time t, it represents the probability 

that an event of type i has occurred by time t. It is represented as 

                       67�8��� = 	9�	 ≤ �	:;�	�:<=
>?	�>@A	B:
C?	<� = 	� �8�
��
�
� .  (6) 

The cumulative incidence function helps to determine patterns of failure and to assess the 

extent to which each component contributes to overall failure. 

 

2.2.7 Cause-Specific Hazard Function 

Survival function and Hazard function are important quantities in the analysis of time to 

event data. The survival function quantifies the probability of a person being event free at 

a given point in time. While the hazard function quantifies the risk that a person who is 

event free at a given point in time will experience the event in the next instant. In 

competing risks, each event has an associated hazard function known as the cause-

specific hazards (CSH). A cause specific hazard quantifies the risk of experiencing an 

event from a particular cause (Aban, 2014). 

 

 The cause-specific hazard refers to the instantaneous risk of failure from a specified 

cause given that no failure from any cause has yet occurred. Formally if failure can occur 

for any i =1, … , k causes. The CSH for cause i at time t is given as 

                                           ℎ8��� = 	 lim∆�→� D��5&E�$∆�,GH,|&I�)∆�
                             (7) 

T is equal to time to first failure from any cause i. A subject will still be at risk at time t 

given that the subject has not died of cause i or any of the i-1 other causes. For D ϵ {1,2, 

… , k}, It represents the hazard of failing from cause i in the presence of the competing 

events. 
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Emerging evidence now suggests that in the presence of competing risks, which will be 

further discussed, the cumulative incidence function, a method which takes into account 

competing risks occurrence, is the appropriate method use to estimate the probability of 

occurrence of the event of interest in the presence of other events. However, researchers 

often use the Kaplan Meier approach (1-KM) to evaluate the survival probability of 

occurrence of a cause-specific endpoint, even if the appropriate data contain competing-

risk events (Gooley, 1999).  

 

2.3 Competing Risk Approach 

In medical research, each person studied can experience one of several different types of 

events over the follow-up period and survival times are subject to competing risks if the 

occurrence of one event type prevents other event types from occurring (Kleinbaum & 

Klein, 2005). For example, in order to determine the incidence of discharge among 

Tuberculosis patients, every patient will be followed from a baseline date (such as date of 

admission) until the date of discharge from hospital. A patient who is discharged during 

the study period would be considered to have an ‘event’ at their date of discharge. A 

patient, who is alive at the end of the study but still in hospital, would be considered to be 

‘censored’. However, a patient can experience an event different from the event of 

interest. For example, a TB patient may die due to TB or unrelated causes. Such events 

are termed competing risk events. 

 

When competing risks are present it is assumed that the subjects contribute independent 

and identically distributed observations to the data; the component fails when the first of 
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all the competing failure mechanisms reaches a failure state; each of the k failure modes 

has a known life distribution model. (Pepe, 1991; Crowder, 1994). One can assume that 

each failure mechanism leading to a particular type of failure proceeds independently of 

each other, including the risk of the event of interest, at least until a failure occurs. 

However, this is often not likely to be true, particularly when there is causal-effect 

between events. To assume independence one must be sure that a failure of one type of 

event has no effect on the likelihood of any other events (Crowder, 1994).  

 

Competing risks modeling is important in time to studying length of stay because a large 

proportion of patients may either die or be discharged, where if one dies, the event of 

interest: discharged would not be observed. Competing risks models offer significant 

advantages over standard survival analysis when competing events exist (Putter. et al., 

2007). Various studies (Gooley et al, 1999; Fine and Gray 1999, Dignam et al, 2012) 

have proposed the use of the cumulative Incidence Function other than the Kaplan Meier 

to estimate quantities pertaining to the probability of failure caused by an event of interest 

when other failure types may preclude it. 

 

2.3.1 Comparison of the Cumulative Incidence Estimate and Kaplan Meier Estimate 

A Comparison of the Kaplan Meier estimate to the cumulative incidence curves,  shows 

that the KM estimates probabilities of one failure in the absence of any others while the 

cumulative incidence curves of each of these causes of failure will sum to the cumulative 

incidence of any failure (Chappell., 2012). Beuscart et al, (2012) in their study found that 

the Kaplan-Meier method overestimated the probability of each event, while the 
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cumulative incidence provided accurate estimations of event probabilities. The study 

looked at the efficacy of peritoneal dialysis (PD) in survival of patients explained that a 

patient on PD could experience a transfer to Hemodialysis, Renal transplantation or death 

which was considered as competing events. They found that the Kaplan-Meier method 

overestimated the probability of each event, i.e. death, transfer to HD, or renal 

transplantation during PD. When the event investigated was death, patients censored 

because of transfer to HD or renal transplantation was considered to be withdrawn alive 

on PD, which led to an overestimation of the probability of death during PD. When the 

event studied was transfer to HD or renal transplantation, patients who died were 

censored and considered to be withdrawn alive on PD (Beuscart. et al., 2012). 

 

Most studies use the complement of KM (1-KM) for comparability sake against the 

cumulative incidence. The complement of KM is an estimator interpretable only if events 

due to all other causes are removed.  The Kaplan Meier complement (1-KM) of event i at 

time t is defined as the cumulative probability of experiencing event i before time t in the 

absence of competing events. It is defined as;  

                                          JK68��� = 	� ℎ8�
��8�
�∆
�
�                  (8) 

                                                          = 1 − �8���                              (9) 

                                                          = 1 − expO−P8���Q < = 1,… , J         (10) 

Where the event-specific survival function for event i, Si(t), is defined as the probability 

that T≥t when I=i. Si(t) can be estimated by the Kaplan Meier estimator. 
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The probability of experiencing a competing event prior to time tis assumed to be zero 

when this does not actually reflect the true situation under competing events. Thus, the 

complement of KM cannot be considered the true probability of an event occurring 

before a certain time t because competing events are treated as censored observations 

(Dignam et al., 2012). 

 

Gooley, et al, (1999) states that the CI gives a more accurate representation of the 

cumulative event probability than the complement of KM in the presence of competing 

events, because competing events are included in the risk set. 1-KM is equivalent to the 

CI in the absence of competing events. 1-KM always overestimates the CI in the presence 

of competing events because reducing the number of individuals in the risk set inflates 

the proportion of individuals at risk. 

 

Verduijn et al, (2011) showed that when cumulative survival probabilities for competing 

events such as Cardiovascular (CV) and non- Cardiovascular (CV) mortality are 

estimated by the Kaplan–Meier method, these probabilities are profoundly overestimated 

for each of the two separate causes. This is in particular the case in populations with high 

mortality, such as in elderly dialysis patients, and/or long duration of follow-up. As a 

consequence, the sum of the estimated CV and non-CV mortality probabilities is (much) 

larger than the all-cause mortality probability and may even exceed 100%. For this 

reason, Kaplan–Meier should not be used to calculate and present cumulative 

probabilities curves for cause-specific mortality. The study looked at all-cause mortality 

and cause-specific mortality (CV and non-CV mortality) were analyzed by Kaplan–Meier 
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analysis and Cumulative Incidence Competing Risk analysis in two cohorts of patients 

with end-stage renal disease (ESRD) on dialysis. 

 

Contrary to the different findings on CI and I-KM, Borrebach (2013) argues that 

choosing between the complement of the Kaplan Meier and the cumulative Incidence is 

ambiguous, since CI has a disadvantage of not removing failures due to competing events 

from the risk set. In his study, where data were simulated and analysis was done for four 

scenarios; When there’s i) Primary event Hazard, ii) High competing event Hazard, iii) 

High random censoring, and iv)  High sample sizes. The results showed that all except 

high competing event hazards had a difference in the estimates for the CI and 1-KM. 

 

Borrebach (2013) explains that 1-KM’s potential clinical advantages with an example 

that suppose a woman diagnosed with stage II breast cancer is due to receive a more 

aggressive treatment if, based on her characteristics her cumulative event probability is 

predicted to be above a certain threshold. If her cumulative event probability is predicted 

to be below that value, she will receive a less aggressive treatment. Suppose also that her 

1-KM estimate lies above this threshold, whereas her CI estimate lies below this 

threshold. In this case, her clinician may decide to exercise caution and use 1-KM, giving 

the more aggressive treatment and presumably having a greater chance of treating her 

cancer. He further explains that there may be instances where clinicians would want to 

avoid overtreatment when the treatments (e.g., certain chemotherapies, radiation 

therapies) have potentially harmful side-effects of their own. In those cases, using the CI 

may be desired instead. The problem for clinicians becomes whether they want greater 
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predictive accuracy or to exercise caution in cases where the benefits of over-treatment 

are perceived to be greater than the risks (Borrebach, 2013). 

 

The studies have clearly shown that using cumulative incidence estimates when dealing 

with competing events lead to unbiased estimates of the cumulative probabilities unlike 

using the Kaplan Meier estimate, although the complement of KM might still be 

clinically advantageous when making decisions.  

 

2.4 Test of Hypothesis 

In addition to estimating the survival functions, Kaplan-Meier Estimator in Origin 

provides three other methods to compare the survival function between two samples. 

These include; Log Rank, Wilcoxon and Tarone-Ware etc. These tests are very useful in 

assessing whether a covariate affects survival however they do not account for competing 

events available in dataset. Therefore two alternative methods: Gray’s test and Pepe and 

Mori test, for comparing cumulative incidence curves for a particular failure type among 

different groups are presented in this section. This study used the Pepe and Mori test to 

test for equality of CIF between two groups. 

 

2.4.1 Pepe and Mori’s Test 

Pepe and Mori’s test is a 2-sample test that was introduced by Pepe and Mori (1993). 

This test compares the cumulative incidence functions (CIF’s) directly for the event of 

interest. The null hypothesis is that there is no difference between the 2 groups. 
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2.4.2 Gray’s Test 

Gray’s test is a K-sample test that was introduced by Gray (1988). It compares the 

weighted averages of the sub-distribution hazards across groups for the event of interest. 

The null hypothesis is that there is no difference among the K groups. The test is based 

on the K – 1 score statistics 

 

2.5 Models in Survival Data Analysis 

This section presents the survival models that are used to estimate the effect of the 

covariates on the hazard rate of an event. These models suggested in the literature include 

the Cox semi-parametric proportional hazard model and some parametric models like the 

exponential model, and Weibull Model and Log-Normal model. The Cox PH and 

competing risk models were discussed in this section, since they were used in the analysis 

of the TB in-patient data.  

 

2.5.1 Cox Proportional Hazard Model 

It is the most common approach to model covariate effects on survival. It takes into 

account the effect of censored observations (Cox., 1972). The model is based on the 

assumption of proportional hazards and no probability distribution assumption is made on 

the survival times. The only assumption made is on the proportionality of the baseline 

hazard. The model is therefore referred to as a semi-parametric model. The proportional 

hazard assumption means that the hazard ratio is constant over time or that the hazard for 

an individual is proportional to the hazard for any other individual (Therneau. & 
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Grambsch., 2000). Let x1, … ,xp be the values of p covariates X1, …. , Xp, according to the 

Cox regression model, the hazard function is given as follows; 

                                   ℎ��� = ℎ����exp	�∑ T8U8V8H� �       (11) 

Where βi = (β1, β2,…,βp) is a 1 × p vector of regression coefficients and h0(t) is the baseline 

hazard function at time t.  

 

In many applications, competing risks have been ignored (such as, patients experiencing 

competing events were censored at the time of these events) and standard Cox regression 

was applied. This approach is adequate when competing risks are rare because it assumes 

independence between the event of interest and censored observations. However, in the 

presence of strong competing risks, standard survival models may overestimate the 

hazard of the event of interest because subjects with a competing (and thus censored) 

event are treated as if they could experience the event of interest in future (Putter et al, 

2007; Wolbers et al, 2009). 

 

2.5.2 Cause Specific Hazard Model 

The regression model on cause-specific hazards is as follows: 

                                    ℎ8��|W� = 	ℎ�8�t�exp	�YZ�                               (12) 

Where X is a vector of explanatory variables and β is a vector of coefficients. The total 

risk of any event happening, the overall hazard rate is  

                                    ℎ��|W� = 	∑ ℎ8���.8                                (13) 

The typical “cause-specific” approach for analyzing competing risks data is to perform a 

survival analysis (standard Cox regression) for each event type separately, where the 
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other (competing) event types are treated as censored categories. There are two primary 

drawbacks of the above method. One problem is that the above method requires the 

assumption that competing risks are independent (Kleinbaum & Klein, 2005) which is 

not the case when dealing with competing risk data. As previously discussed, to estimate 

the survival probabilities, the CIF is much appropriate when dealing with competing risk. 

The Cox-Proportional hazards may be used to model the cause-specific hazards in 

regression modeling (Aban, 2014). However testing for equality of CSH is not equivalent 

to testing the equality of CIF(Gray, 1988). 

 

Cause-specific hazard and corresponding hazard ratio’s, are estimated using Cox 

proportional hazards model for each failure event. The comparison of the cause-specific 

hazards is made as if the other types of events did not exist. Kim (2007) regarded this 

approach as unrealistic. 

 

Several modeling approaches are available for evaluating effects of covariates on the 

cause-specific outcome in competing risk data (Fine. & Gray., 1999). Two popular 

approaches are (1) modeling the cause-specific hazard of each event separately by 

applying the standard Cox regression for the event of interest and censoring all other 

observations. The second approach is Fine and Gray’s (1999) extension of the Cox 

regression that models (the hazards) the CIF.  
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As already mentioned, the cause-specific hazard can be modeled using the Cox model, 

which is broadly used in medical research. The relationship between the CIFi(t) and the 

cause-specific hazard is mathematically represented as; 

67�8��� = 	\ ℎ8�W���W��W
�
�

 

                                                               = � ℎ8�W�?W]^−∑ P4�W�,4H� _�W�
�  

                                                               = � ℎ8�W�?W]^∑ � ℎ4�
��
`
�,4H� _�W�

�          (14) 

Where S(x) is the overall survivor function, Hj(x) is the cause-specific for cause j, which 

is integrated from 0 to x of the CSH for cause j.  

 

A study done by Andersen et al (2012) on Competing Risk in Epidemiology Possibilities 

and Pitfalls deduced that a one to one correspondence between a single rate (cause-

specific hazards) and the corresponding risk (cumulative incidence [CI]) no longer exists. 

This means that any given CI depends on all cause-specific hazards and vice versa. Also 

another consequence of lack of correspondence is that covariates may affect a cause i 

specific hazard and cause i CI differently. He suggested that cause-specific hazards may 

be more relevant when the disease etiology is of interest, since it quantifies the event rate 

among the ones at risk of developing the event of interest. Though this was their 

deduction, they concluded that CI’s are easier to interpret and are more relevant for the 

purpose of prediction. 
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Cause-specific hazards can inform us about the impact of risk factors on rates of disease 

or mortality, while the cumulative incidence functions provide an absolute measure with 

which to base prognosis and clinical decisions on (Koller. et al., 2011). Although the 

CSH’s and the CIF are reported separately, Hinchliffe, (2011) did a study that would 

model competing risks scenarios using an approach that estimates both the cause-specific 

hazards and the cumulative incidence functions as they believed both to be useful 

measures. Such an approach was defined by Fine and Gray (1999) and will be explained 

in the later section. 

 

2.5.3 Sub-Distribution Hazard Model 

In recent years, research methods centered on directly assessing covariate effects on a 

CIF have been developed (Jeong & Fine, 2007). One important work is the proportional 

sub-distribution hazards model proposed by Fine and Gray (Jeong. & Fine., 2007). This 

approach directly measures the covariate effects on the cumulative failure probability due 

to one risk, in the presence of other risks. Fine and Gray (1999) specify a model for the 

sub distribution hazard formally defined for failure cause i as  

ℎa8��� = lim∆�→� bD��E&5�$∆�c1�(c8defghceig8|&%�	jf	�&5�c1�1j�(c8defghceig8�∆� k       (15) 

This hazard generates failure events of interest while keeping subjects who experience 

competing events “at risk” so that they are counted as not having any chance of failing 

As in any other regression analysis, modeling CIF for competing risks can be used to 

identify potential prognostic factors for a particular event in the presence of competing 
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risks, or to assess a prognostic factor of interest after adjusting for other potential risk 

factors in the model. 

 

The cause-specific hazard model may be more clinically understandable when assessing 

the prognostic effect of the covariates on a specific cause because we see that the 

covariate effect would be to reduce or increase the instantaneous probability of the event 

of interest irrespective of other covariate effect. However, when the study objective is to 

compare the probability of the event of interest, then the sub-distribution hazards model 

is appropriate (Lim et al, 2010). The sub-distribution model is more desired because it 

assesses covariate effect on CIF directly unlike cause-specific model which is an indirect 

measurement. Although this is the case the sub-distribution hazards model might be 

limited to populations with similar characteristics and similar competing risk rate, the 

cause-specific hazard model is applicable for any population with similar characteristics 

regardless of the rates of competing risk events (Pintilie, 2007).  The sub distribution 

hazard model can be used to calculate the CIF from it by the equation; 

																																													67�8��� = 	1 − exp�−Pl8����                             (16) 

Where Pl8��� = 	� ℎa8������
�  is the cumulative sub-hazard. The sub-distribution hazard 

model is semi-parametric in that the baseline subhazard ℎa�,���� (covariates set at zero) is 

left unspecified, while the effects of the covariates x are assumed to be proportional; 

                                       ℎa8��|Z� = ℎa�,����exp	�ZY�                             (17) 

No direct relationship exists between the cause-specific hazard and the cumulative 

incidence function in estimating effects of covariates. Therefore, in such situations, the 
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emphasis must shift from the conventional modelling of cause-specific hazard function to 

modelling of quantities directly tractable to the cumulative incidence function (Fine and 

Gray 1999; Klein 2003). 

 

In their study, Methods of competing risks analysis of end-stage renal disease and 

mortality among people with diabetes, Lim et al, (2010) showed that the estimates of the 

covariates coefficients on the cause-specific hazards and on the sub-distribution hazards 

models were different. Their study applied a cause-specific and sub-distribution hazards 

model to a diabetes dataset with two competing risks (end-stage renal disease (ESRD) or 

death without ESRD) to measure the relative effects of covariates and cumulative 

incidence functions. 

 

Latouche et al, (2007), also showed that the effects of covariate on the cause specific 

hazard and on the sub-distribution hazard were normally different. This clearly shows 

that to test for effect of covariates on the CIF, a suitable regression model for the 

competing risks must be used. Lim et al (2010) concluded that either the cause-specific 

hazards model or the sub-distribution hazards model can be used for a dominant risk. 

However, for a minor risk we do not recommend the sub-distribution hazards model and 

a cause-specific hazards model is more appropriate in competing risk data analysis 

The Sub-distribution and Cause-specific hazard model were applied to assess the effects 

of covariates on the cumulative probability of being discharged taking into account that a 

patient can die within the hospital period. The study then compared the effects of the 

covariates on the cumulative incidence and cause specific hazard to choose the best 
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model that best explained the relationship between the covariates and the cumulative 

incidence function or the cause-specific hazard function for the event of interest.  

 

2.6 Model Diagnostics 

This section presents different approaches to assess the assumptions under different 

models. These include the use of time varying covariates, Cox Snell for goodness of fit 

test and graphical approach using schoenfeld residuals. 

 

2.6.1 Cox Snell Residuals 

The basic issue involving the use of the Cox-Snell residuals is goodness of fit of the Cox 

PH model. As defined by Collet (2003), Cox-Snell residuals are given as 

                                           >B8 = expOT. mW8QPn���8�.          (18) 

When assessing the model, the plot of the integrated hazard based on the residuals against 

the hazard rate estimates backed out of the Cox model should have a 45-degree slope. 

Therefore if Cox model fits, then the residuals should be distributed as unit exponential 

i.e. should behave as if they are from a unit exponential distribution. The Cox-Snell 

residual was applied to determine if the model fit well to the data. 

 

2.6.2 Time- Varying Covariates 

Kleinbaum and Klein (2005) define time-varying covariates as any covariate whose value 

for a given subject may differ over t, whereas a time-independent variable is a variable 

whose value for a subject remains the same over t. For our study, age and HIV status can 

be regarded as time-varying covariates. Collet (2003) defined an Internal and External 
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time-dependent variable. Internal variables are related to a patient within the study and 

can be measured if and only if the patient is alive e.g. Blood pressure, CD4 count etc. 

While external variables are variables that do not necessarily need the patient to be alive 

for example Age of a patient. Time varying covariates can be used in the different 

survival models and they produce time-varying coefficients. If for example the Cox PH 

model includes a time-dependent variable X(t)then the model becomes: 

                                           ℎ8��� = ℎ��t�exp	�∑ T8W84����V4H�                           (19) 

Where h0(t) is the baseline hazard function for an individual for whom all the variables 

equal to zero and is constant. The values of the explanatory variables xij(t) depends on 

time and in such a situation the proportional hazard assumption is violated. This study 

used fitted models with time-varying covariates to assess if the PH assumption was met 

in the Fine and Gray model. 

 

2.6.3 Schoenfeld Residuals 

In this study three types of models were considered. These are the non-parametric 

cumulative incidence function, Cox-cause specific hazards and sub-distribution hazards 

model. The Cox-CSH and SDH model assumes that the hazard ratio comparing any two 

specifications of a covariate is constant over time. This means that the hazard for one 

individual is proportional to the hazard for any other individual (Cleves, et al, 2010). 

To check whether the PH assumption is met in respect to a particular covariate, the 

Scoenfeld residuals proposed by schoenfeld (1982) is used.  Collet (2003) denotes the ith 

scoenfeld residual for Xj, jth explanatory variable in the model as given by; 

                                               >V48 = o8^W48 − pq48_;                                              (20) 
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Where xji is the value of the jth explanatory variable, j=1,2,3, … ,p, for ith individual in 

the study. The schoenfeld residuals are particularly useful in evaluating the PH 

assumption after fitting a Cox regression model. 

 

2.6.4 Martingale’s Residuals 

These residuals are used to check the functional form of continuous covariates. Hosmer 

and Lemeshow (1999) define the martingale residuals as; 

                                                Kn8 = 68 −Pn8                                                          (21) 

Where the components of the residual for the ith subject are the values of the censoring 

variable Ci and the estimated cumulative hazard Pn8=Pn��8, W8 , T.�. Therneau, Grambsch 

and Fleming (1990) proposed fitting the Cox model without the covariate. The results are 

then used to generate smoothed values such as lowess smooth. These are then plotted 

against the values of the excluded covariate. 
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CHAPTER THREE 

 

METHODOLOGY 

 

This chapter describes the methodology used in this study. In particular, study design; 

data collection and data analysis; analysis approach and lastly ethical consideration. 

 

3.1 Study Design 

The study used secondary data from Surveillance Programme of In-patients and 

Epidemiology (SPINE) project, collected at Queen Elizabeth Central Hospital, in 

Malawi. This study was a retrospective cohort analysis of data from people with all forms 

of TB in the year 2014, (from 1st January 2014 to 28th November, 2014).  

 

3.2 The SPINE Data 

SPINE (Surveillance Programme of In-patients and Epidemiology) project is a 

computerized real time data collection system. The information system recorded tracked 

and managed in-patient care and appointment data. The patient registration system 

allowed all patients to be recorded with relevant details. Using a unique barcode for each, 

it was able to identify patients so that their records could be retrieved from the system in 

future visits by simply scanning their assigned barcodes. 
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The SPINE data was availed for this thesis in Microsoft Excel spreadsheet format. It 

covered patient’s diagnosis and admission information from January 2010 to November 

2014. The dataset used in this study contained information on adult in-patients only. An 

adult here was defined as any individual 15 years of age and above. 

 

3.3Data Collection and Management 

The study extracted the TB cases into Microsoft Excel 2007 from the SPINE database 

admitted from January and followed up for 6 months. The study utilized information on 

adult male and female patients who had been admitted with TB and were on treatment. 

Time to discharge or death whichever occurs first was captured. Date of admission and 

date of discharge from hospital after a treatment outcome observed was collected. Socio-

demographic characteristics and clinical information was collected from all subjects. The 

socio-demographic characteristics included were age and gender. The clinical data 

included HIV status; ARV status; date of HIV test and a patients TB class (whether 

pulmonary or extra pulmonary). Once patients were admitted, they were tested for their 

HIV status, if found reactive, they were put on ART treatment. These records were 

entered into SPINE under the medical records for the patient for future reference.   

 

3.4 Sample size and Sampling procedure 
 

The data of this study came from Queen Elizabeth Central Hospital through Malawi 

Liverpool Wellcome Trust. The data had information on patients with all forms of TB 

and admitted due to unstable clinical conditions. A representative sample of 4500 TB 

admissions were available in the dataset of adults in the required age group of 15years 
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and above which was the target population of this study. The study analysed information 

from 2220 TB patients who were admitted with TB during the interested study period. 

 

3.4.1 Inclusion and Exclusion Criteria 

• The study looked at TB patients (15 years old) who were admitted within January 

and June 2014, the entry point was admission in hospital due to TB or bad clinical 

conditions other than TB.  

• Patients on TB treatment below 15 years old and who were treated as out-patient 

were not included in the study 

 

3.5 Study Outcome 

The main outcome variable of this study was  

• Time to discharge from hospital  

Time to death was also considered as an outcome variable but was used as purpose of 

explaining its effect on modeling time to discharge with death as a competing event. 

 

3.6 Data Handling and Description 

The data was collected from the QECH spine database and patient case records once 

authorization was sort and approval was given by the College of Medicine Ethical 

Committee. The data was explored to obtain important variables that would be used for 

analysis. The data was first cleaned, and then sorted for easy navigation when doing 

analysis.In this study the individual patient (with TB) was the unit of analysis and the 

outcome variable consists of situations which were times to: discharge (main event), 
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death (competing event) or censored (Transferred, Referred and absconded). The 

variables under censored were grouped into one variable “Censored” due to small sample 

data within each variable. Length of stay (time to discharge) was calculated from date of 

hospital admission to the date of discharge including any hospital transfers that occurred. 

Categorical variables were coded using numbers e.g. male =0, female=1; HIV positive = 

1, HIV negative=0; died=0, discharged=1, censored=2.  Age and time to discharge were 

continuous variables. Survival time was measured in days.  

 

3.7 Data Analysis 

The analysis first looked at some descriptive statistics (frequencies, Inter-quartile range, 

and median) for the baseline characteristics.  The cumulative incidence curve and Kaplan 

Meier curves were compared. CI curves for categorical variables; gender, HIV status and 

ART status were obtained and comparison between the different groups for the patients 

in terms of survival was performed. Secondly the Pepe and Mori test was done to 

compare cumulative incidence to discharge between groups for gender, HIV status and 

ART status. The null hypothesis was defined as the cumulative incidence to discharge is 

the same for both groups.  Inferential statistics involved obtaining hazard ratios for the 

calculated probability. Finally at a multivariate level factors that affect the time to 

discharge for a patient on TB treated were obtained. 

 

Statistical analysis were done using STATA version 12, a statistical software package 

created in 1985 by StataCorp used in data management, Statistical analysis, graphics and 

Simulations. Two extra programs from Statistical Software Components archive was 
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needed to conduct analysis on non-parametric cumulative incidence function. To estimate 

nonparametric cumulative incidence function, the command stcompet (refer to Appendix 

1)by Coviello and Boggess (2004) was installed. To test equality of cumulative incidence 

functions among groups, the command stpepemori written by Coviello (2008) was used. 

The sub-distribution hazards were performed using Stata 12 command stcrreg. The 

Schoenfeld residuals and plots were used to test the PH assumption. The Martingale 

residuals were used to check the Linearity of variable age. Time-varying covariates were 

used to test for PH assumption for the Sub-distribution hazard model. 

 

3.8 Model Specification 

Competing risks are represented by the failure time T, the failure cause D and a vector of 

covariates Z. T is assumed to be a continuous and positive random variable, D takes 

values in the finite set {1, … , i}. The failure cause D can be either the event of interest, 

in our case D=1 representing “Discharge” D=2 representing “Death” and D=3 

representing “Censored”. This study used semi-parametric proportional hazard models 

because of their flexibility (no distributional assumption on time and availability of 

software for fitting these models). 

 

3.8.1 Plotting Cumulative Incidence Function 

The estimation of the probability of occurrence by time t, for a particular failure can be 

handled by fitting 1-KM, the complement of the Kaplan-Meier estimator or the 

cumulative incidence function. This study did consider 1-KM for the estimation because 
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it leads to bias when dealing with competing events, but a comparative analysis was done 

between the two. 

CIF is the probability of experiencing an event by a given time. Denoted as Ik it describes 

the risk of failing from cause k until time t: Ik(t) = P(T≤tand D = k). 

 

3.8.2 Modelling Cause-Specific Hazards 

As stated in the previous chapter, the cause-specific hazard function for failure cause k is 

the instantaneous failure rate of failing at time t of cause k.  

The cause-specific hazard function for the k-th cause is defined by; 

ℎ, = lim∆�→� r
9�� ≤ 	 < � + ∆�, t = u|	 ≥ ��

∆� v 

For D ϵ {1,2, … , k}. It represents the hazard of failing from cause j in the presence of the 

competing events. The regression model on cause-specific hazards is as follows: 

ℎ��|w� = 	ℎ�,?xyz 
The total hazard ℎ��; w�defined in terms of the cause specific hazards equals the 

corresponding hazards function summed up to time t as follows; 

ℎ��|w� = |ℎ,���
}

,H�
 

This implies that the all cause hazard rate is the sum of K hazards (Grey 1988).Several 

studies have pointed out that the Cox-Proportional hazards can be used to model the 

cause-specific hazards in regression modeling (Aban, 2014). Although this is the case, 

cause-specific hazards have some shortfalls, one of the problems being that the above 

method requires the assumption that competing risks are independent (Kleinbaum & 
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Klein, 2005) which is not the case when dealing with competing risk data. In this study 

the cause specific hazard was modeled using the Cox model, which is broadly used in 

medical research. 

 

3.8.3 Modelling Sub-distribution Hazards 

Fine and Gray (1999) developed a semi-parametric model that considers all important 

factors in a competing risk setting. These factors are the baseline hazard effect for the 

outcome events, the covariate effect for the outcome events and the effect of time itself. It 

directly links the covariates to the cumulative incidence function. The Fine and Gray is a 

proportional hazards model for the sub-distribution hazard of the event of interest defined 

as 

~̅���� = 	−� log�7 − 7�������  

Given covariate X, the model is of the form~̅���|U) = 	 ~̅�,�(�) exp(T� U), where ~̅�,�(�) 

is the baseline sub-distribution hazard for the event of interest. This study used this 

method as explained in literature that it is a model that directly links covariates to the 

cumulative incidence of discharge, therefore this method was appropriate to identify 

prognostic factors of length of stay.  

 

3.9 Ethical Consideration 

Full ethical approval was granted by College of Medicine Research Ethics Committee 

(COMREC) to collect data from Queen Elizabeth Central Hospital. Patients’ names were 

not used during analysis so as to uphold confidentiality. Refer to certificate of approval in 

Appendix 4. 
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CHAPTER FOUR 

 

RESULTS AND DISCUSSION 

 

This chapter presents and discusses the results that have been obtained from the study 

analysis. Section 4.1 presents the exploratory data analysis, section 4.2 presents the fitted 

models, and section 4.3 presents model assumption assessment.  

 

4.1 Exploratory Data Analysis 

The SPINE dataset had 1325 patients who were admitted at QECH between January 2014 

and November 2014 for TB related diseases. Out of 1325, the study analysis considered a 

total of 1220 TB-infected patients.  
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Table 1: Baseline Characteristics 

Frequency                                                                      Interquatile Range 
 
                                                                    Median    Std. Dev.   25th 75th 
Age (Years)                                                          35      11.9          29    43 
Time to discharge (Days)                                            11       20.4           6      20 
 
Categorical Variables                   n(%) 
Gender 
Male                                             679 (55.6) 
Female                                          541 (44.4) 
HIV Status 
Positive                                         996 (86) 
Negative                                       162 (14) 
ART Status 
No                                                 252 (25.3) 
Yes                                                731 (73.3) 
Defaulter                                         14 (1.4) 
 
Health Outcome 
Discharged Alive                           891(73.03) 
Dead                                              322(26.39) 
Censored 
(Transferred,  
referred & 
absconded                                        7(0.57) 
 

Table 1 gives a summary of the baseline characteristics of the patients included in the 

study. The median time to discharge for TB patients in the year 2014 was 11 days. Out of 

1220 TB patients, 891(73.03%) were discharged alive while 322 (26.39%) died while in 

hospital and 7 (0.57%) where either transferred, referred or absconded the admission, 678 

were males representing 55.6% and 996 (86%) patients were registered as HIV positive. 

Out of the 996 HIV positive patients, 731 (73.3%) were on ART therapy, while 252 

(25.3%) were not on ART therapy. Table 1 show that, the percentage of TB patients who 

were HIV positive was high (86%) as compared to TB patients without HIV. This  

observation agrees with the WHO 2003 report, which stated that most common cause of 
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immuno-suppression in Malawi is HIV infection that leads to AIDS and that HIV 

infection leads to rapid progression from TB infection to disease and increases the risk of 

re-activation of old infection into active disease. The lifetime risk of developing TB of 

HIV non-infected individuals is between 5 to 10% while that of infected individuals is 

between 30 to 50% or 5 to 15% per year(WHO, 2010). 

 

The primary diagnosis variable which explained the patients diagnosis at admission 

constituted of different type of Tuberculosis, which included; Tuberculosis Miliary, TB 

sepsis, TB spinal, TB meningitis, TB pulmonary etc. Appendix 2summarizes the various 

TB categories that the patient’s in this study were primarily diagnosed of. The table 

shows that 469 patients had Pulmonary TB and that there were some categories stated as 

TB, Pleural PTB (Pulmonary Tuberculosis), PTB relapse, some of these fell under 

Pulmonary TB. It also shows that 80 patients had Tuberculosis EPTB (Extra-pulmonary 

Tuberculosis) but they were also others who had EPTB relapse, Tuberculosis Iris, 

Tuberculosis Anemia etc.  Length of hospital stay was based on the primary diagnosis of 

all forms of TB. 
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Table 2: Characteristics of the TB patients by Outcome category 

Variable Categories Outcome Categories  

  Alive Dead Censored Total 
Sex Male: n (%) 478 (70.3) 199 (29.3) 3 (0.4) 680 
 Female: n (%) 415 (76.6) 123 (22.7) 4 (0.7) 542 

Art Status No: n (%) 194 ( 76) 58 ( 23) 1 (0.4) 253 
 Yes: n (%) 526 (72) 200 (27) 5 (0.7) 731 
 Defaulter: n(%) 12 (86) 2 (14) 0 (0.0) 14 

HIV Status Non-Reactive: 
n(%) 

126 (78) 36 (22) 0 (0.0) 162 

 Reactive: n(%) 731 (73) 259 (26) 6 (0.6) 996 

Age (Years) Mean (IQR) 34 (13) 38 (14) 42 (20) 35 (14) 

Failure 
time(Days) 

Median (SD) 12 (21.7) 10(15.8) 5.5(5.4) 11(20.4)  

 

Table 2 shows the baseline characteristics against the dependent variable type of failure. 

The results from the table showed that there was a high in-hospital mortality rate in the 

various categories. Out of 680 male TB patients, 478 (70.3%) were discharged alive 

while 199 (26%) died while in hospital. Although this is the case, it can be observed that 

the percentage of death in males is higher than in females. One of the reasons suggested 

of this difference is that males in general have higher risk of acquiring Mycobacterium 

tuberculosis infection because of a wider network that leads to a greater exposure to the 

organism (Johansson. et al., 2000). Out of 996 HIV positive TB patient’s 731(73%) 

patients were discharged alive. Out of 162 HIV negative patients 126 (78%) were 

discharged alive while 36 (22%) died while in hospital. There were no patients who were 

transferred or referred from this group. Among the HIV positive patients, out of 731 who 

started ART therapy, 526 (71.96%) were discharged from hospital and 58 (76.68%) died 
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while in hospital. A higher percentage of HIV negative patients were discharged than 

HIV positive patients but the results were not statistically proven if significant. 

 

Table 2 shows that, the median time to discharge alive was 12 days and 10days for 

patients who died in hospital. The median hospital stay for TB patients at QECH was 11 

days. Holmquist et al. (2008) found that in 2006, the average hospital stay in the US for a 

primary Tb diagnosis was 15.0 days more than twice the average stay for a patient with a 

secondary TB diagnosis (6.6 days). A study on Tuberculosis on African refugees from 

Eastern sub-Saharan Africa found that the average length of hospitalization for the TB 

patients they studied was 8.7 days. The patients were admitted due to TB related diseases 

or due to clinical conditions other than TB (Nesher. et al., 2012). A study done in 

Botswana showed that Mean duration of stay in the hospital for TB patients was 12 days 

(Stolp. et al., 2013). The duration of stay in this study was determined by TB illnesses 

and not diseases un-related to TB. These non-TB diseases could be contributing factors to 

length of stay. Appendix 3 summarizes patient’s secondary diagnosis. A study done in 

Israel studied length of stay of patients with TB who were admitted due to various 

reasons on top of TB illnesses. Their study showed that the mean LOS was 8.7 days. One 

reason explaining this difference with results from this study, could be because the 

hospital under study in Israel did various tests to identify TB and the patients were 

admitted mainly due to TB which is not the case with Malawi where simple tests are done 

but advanced tests that require high technology are not available such as extensive 

radiological investigations: a chest computed tomography scan, abdominal CT and spine 
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CT and magnetic resonance imaging, trans-bronchial biopsy and pleural biopsy (Nesher. 

et al., 2012) 

 
 

Figure 1: Distribution of Patient’s Length of time in hospital 
Figure 1 shows the distribution of patient’s time in hospital. The figure shows that time to 

discharge for a patient was skewed to the right with most patients being discharged 

around day 11.  
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Figure 2: Distribution of time to discharge by Gender and HIV Status 
 

Figure 2 shows that for females HIV positive or negative the median length of hospital 

stay is similar. The same applies to HIV positive and negative males, the median length 

of hospital stay is similar and the median length of stay is higher for males than for 

females. The median length of hospital stay for males is 12 days and 10 days for females   

with varying time outliers. Figure 2 shows that the distribution of time to discharge was 

right skewed for males and females who are HIV positive and negative. 
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4.2 Comparison of Cumulative Incidence and Complement of Kaplan Meier (1-KM) 

 
 

Figure 3: Comparison of 1-KM and Cumulative Incidence (CI) curves 
 

The 1 minus Kaplan-Meier (1-KM) estimates and cumulative incidence estimates were 

generated, plotted and compared. From day 1 the 1-KM estimates and the CI estimates 

were similar. As shown in Figure 3 the estimates for CI and 1-KM are similar but as the 

number of day’s increases, the estimates greatly differ from each other. The 1-KM 

estimator provides inflated probabilities of discharge among the TB patients as compared 

to the cumulative Incidence. The difference is very noticeable after 10 days and increases 

with more competing events i.e. death as evidenced from Figure 3. Whereas the 

cumulative Incidence estimates the probability of discharge before time t and its cause 

specific hazard which is the conditional probability of being discharged before a time 

interval given that an individual has survived and did not die up to time t. Thus the CI 

estimates the probability of discharge taking into account that one might die before a 

discharge resulting in true and realistic estimates of probability of event discharge. The 
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cumulative Incidence estimates and compares cumulative event probabilities of a specific 

event. 

 

This finding is similar to several studies and authors (Borrebach, 2013; Gooley. et al., 

1999; Sherif, 2007)that have pointed out that the CI is an appropriate tool to use for 

estimation in the presence of competing risks. Sherif (2007) stated that the use of 1-KM 

to estimate cause-specific cumulative probabilities leads to inflated estimates of 

proportion of patients at risk of failure at time t. Since the 1-KM makes an assumption 

that the probability of failing prior to time t from cause k is equal to 0.  

 

4.3 Model Estimation Results 

4.3.1 Non-Parametric Cumulative Incidence functions 
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Figure 4:Non-parametric cumulative Incidence functions for HIV Status, ART  
     Status and Gender 
 

Figure 4 presents a comparison of the CIF’s for categories within groups. The figure 

shows that HIV negative patients had a higher likelihood of being discharged than HIV 

positive patients. HIV negative patients had a 0.65 probability of being discharged by day 

50 while HIV positive patients had a 0.6 probability of being discharged. The CI curve 

for ART shows no difference, implying that there is no difference in the probability to 

discharge for patients on ART and for those not on ART.  

Table 3: Pepe and Mori cumulative Incidence tests 
Parameter Outcome Event ��� P-Value 

HIV Status Main Event Discharged 0.158 0.691 
Competing 
Event 

Death 1.993 0.158 

ART Status Main Event Discharged 0.650 0.420 
Competing 
Event 

Death 0.834 0.361 

Patient’s Sex Main Event Discharged 0.476 0.490 
Competing 
Event 

Death 2.307 0.129 
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The p-values for the Pepe and Mori tests, for both events (discharge and death) from 

Table 3 above lead to failure to reject the null hypothesis which states that the cumulative 

incidence for the categories are similar. This shows that there is no significant difference 

in cumulative incidence of discharge and death for the three categorical variables (p-

value > 0.05). Based on the test at a 5% probability of making an error, HIV positive and 

HIV negative TB patients have the same likelihood of being discharged or dying from 

hospital. Although this is the case, Figure 4 shows that HIV negative patients with TB at 

QECH had a higher likelihood of being discharged from hospital than HIV positive 

patients. Figure 4 also shows that females had a higher likelihood of being discharged 

than the males though the Pepe and Mori test showed that there was no significant 

difference in the cumulative incidence between males and females. In terms of length of 

hospital stay, Figure 4 showed that HIV positive TB patients and male TB patients 

seemed to have a longer hospital stay before discharge than HIV negative patients and 

female patients respectively.  

 

4.4 Competing Risk Regression Models 

4.4.1 Semi-Parametric Analysis 

The study was interested in the taking into account the competing event (death) when 

estimating the effects of Age, Sex, Primary Diagnosis and HIV Status on the hazard of 

discharge for admitted TB treated patients.  This effect was determined by observing the 

estimates obtained from the CSH model and estimates from the SDH model, if the 

estimates are similar between the models then the assumption that is used when modeling 

CSH of independence between the main event and competing event holds (Dignam et al, 
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2012). This would imply that death does not affect estimation of the covariates on the 

main event “Discharge”.  

 

The probability of discharge within the study period was not different for various groups 

within the variables; HIV status, ART status and gender under the Pepe and Mori test. 

Despite such results, the non-parametric curves for HIV status and gender in Figure 4, 

explain existence of some chance of differences in time to discharge between the levels 

within these categorical variables. This section presents Cause-specific and Sub-

distribution models for time to discharge and time to death against the covariates age, 

HIV status and gender. The variable ART status was not included in the model due to its 

insignificance. 

 

4.4.2 Analysis of Covariate effects on events Discharge and Death 
 

Estimates obtained from fitting the sub-distribution hazard based on Fine & Gray (1999) 

and the Cox cause-specific hazard models are presented in Table 4 and 5. These models 

provide a good check for independence of events assumption made when implementing 

cause-specific models. The Univariate and multivariate sub-distribution hazard and 

cause-specific models for main event discharge and competing event death are presented.
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Table 4: Comparison of Univariate CSH and SDH for event “Discharge” and competing event “Death” 

  Model Effect Estimates 
  CSH Fine and Gray- SDH 
Event Type  
Discharge  HR p-

value 
95% 
Estimate CI 

SHR p-
value 

95% 
estimate CI 

Age(in Years)  0.99 0.023 (0.99, 1.00) 0.985 <0.001 (0.98,0.99) 
HIV Status Negative Reference   Reference   
 Positive 0.963 0.716 (0.79, 1.18) 0.894 0.257 (0.74,1.09) 
Sex of Patient Male Reference   Reference   
 Female 1.11 0.134 (0.97, 1.28) 1.23 0.004 (1.07,1.41) 
       
Death  
Age(in Years)  1.02 <0.001 (1.012,1.032) 1.02 <0.001 (1.015,1.033) 
HIV Status Negative       
 Positive 1.41 0.069 (0.97     2.05) 1.499 0.029 (1.04-2.15) 
Sex of Patient Male       
 Female 0.92 0.499 (.72   1.17) 0.85 0.189 (0.67-1.08) 
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Table 4 presents Univariate cause-specific hazard and sub-distribution estimates for event 

discharge and competing event death. HIV status was a significant effect on the sub-

hazard of discharge but was not significant for the CSH model. Variable Age 

significantly affects time to discharge among the TB patients for both models (p<0.05). 

Based on the p-value for variable age, it is regarded as a significant predictor, but the 

confidence interval does contain a 1. In this instance age is still a significant predictor but 

its effect is based after a large increase in age. Therefore with a 20 years increase, older 

patients were less likely to be discharged by 2% compared to younger TB patients.  

Patients Sex did not show a significant effect but it is observed that female patients have 

a 9% likelihood of being discharged than male patients when death is treated as censored 

and 12.7% with death as a competing event.  

 

Univariate CSH models and SDH models were again fitted for competing event death. 

Table 4 presents the hazard and sub-hazard estimates obtained. Similar to the CSH model 

for event discharge, Age significantly affects the cause-specific hazard for death. As age 

increase, the cause-specific hazard of dying for a TB patient in hospital increases by 2%. 

In other terms, older TB patients are more likely to die while in hospital than younger 

patients. For the CSH model HIV status and Sex were not significant predictors in 

explaining hazard of death.  

 

The Univariate SDH models in Table 4, showed that age significantly affected the 

cumulative Incidence of discharge (via the sub-distribution hazard) with a sub-hazard of 

0.985 (95% CI: 0.98-0.99) and p-value<0.001. Gender is also statistically significant with 
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a sub-hazard of 1.23 (95% CI: 1.07, 1.41) and p-value=0.004. Older TB patients are 1.5% 

less likely of being discharged with time. Female patients are 23% more likely to be 

discharged within the 6 months than male patients. The results show that for the univarate 

CSH and SDH model, HIV status had no significant effect on time to discharge from 

hospital. 
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Table 5: Comparison of Multivariate CSH and SDH for event “Discharge” and competing event “Death” 

   Model Effect Estimates 
   Cox CSH Fine and Gray- SDH 
     
Event Type  Category HR p-value 95% 

Estimate 
CI 

SHR p-
value 

95% 
estimate CI 

         
Discharge    
Age(Years)   0.993 0.040 (0.99,1.00) 0.986 0.001 (0.98,0.99) 

HIV Status  Negative Reference      

  Positive 0.949 0.611 (0.78, 1.16) 0.824 0.048 (0.68,1.00) 

Gender  Male Reference      

  Female 1.09 0.244 (0.94, 1.26) 1.127 0.097 (0.98, 1.30) 

         
Death    
Age(Years)   1.02 <0.001 (1.01, 1.03) 1.02 <0.001 (1.013, 1.29) 

HIV Status  Negative Reference      

  Positive 1.25 0.227 (0.87, 1.80) 1.24 0.238 (0.87, 1.78) 

Gender  Male Reference      

  Female 0.811 0.078 (0.64, 1.02) 0.75 0.017 (0.597, 0.95) 
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A multivariate SDH model was fitted for covariates age, Sex and HIV status as presented 

in Table 5. The results showed HIV status and age were statistically significant in 

predicting the sub-hazard of discharge. HIV status had a sub-hazard ratio of 0.824 with a 

p-value of 0.048. HIV positive patients had a 17.6% less sub hazard of being discharged 

from hospital than HIV negative patients. Older patients again were 1.4% less likely to 

being discharged with an increase in age by 20 years. Variable sex turned out to be 

statistically insignificant.  A univariate CSH model for effect of ART on time to 

discharge with death as a competing event was fit. ART status of a patient was found not 

to be a significant predictor in modeling time to discharge (����� = �. ��,	p=0.079), A 

SDH model of event discharge was fitted for ART Status and it was found to be 

statistically insignificant. Overall ART was not significant in explaining time to discharge 

in the presence of a competing event death. 

 

The multivariate model of CSH was fitted for event discharge and competing event death, 

the estimates are shown in Table 5. The results show that HIV positive TB patients were 

41% more likely to die in hospital than HIV negative patients. Age was the only 

significant factor affecting time to death in the CSH model. The CSH model for event 

discharge showed no significant factor. Females are 8% less likely to die in hospital than 

males, though this effect is not significant. ART still remains insignificant with p>0.05. 

The Multivariate SDH model for competing event death showed that age and HIV status 

are statistically significant in explaining the cumulative incidence of death. HIV positive 

patients are 50% (SDH=0.499) more likely to die in hospital than HIV negative patients. 

Once again older patients are more likely to die in hospital within the admission time. 
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ART status was again not statistically significant in explaining cumulative incidence of 

death with p>0.05. 

 

Two approaches of modeling can be used when competing risks are present: modeling 

the cause-specific hazard and modeling the sub-distribution hazard which takes into 

account the competing risk. The results show that, the SDH estimates and the CSH 

estimates were slightly different.  This shows that the contribution of death in reducing 

association between covariates and discharge was minimal. This is in-line with various 

studies that have shown that the covariate effects using the CSH model or the SDH model 

differ (Teixeira. et al., 2013) as shown in this study. A covariate not significant on hazard 

of main event can be significantly associated with cumulative probability of that main 

event if the covariate influences the hazard of the competing event (Dignam. et al., 2013). 

Fine & Gray., (1999) also showed that the parameter estimates for the CSH and SDH 

model differ for the main event. 

 

Several authors have differed on the type of model to use to estimate effects of covariates 

on the probability of the event of interest. Andersen. et al., (2012) pointed out that the 

cause-specific hazards may be more relevant when the biological mechanism of the 

disease is of interest, since it quantifies the event rate among the ones at risk of 

developing the event of interest. One of the drawbacks for the CSH model is that it fails 

to directly link the effect of the covariates on the CIF of the event of interest. Many have 

proposed use of the Sub-distribution hazard model since it directly links the covariates to 

the cumulative incidence function. The results from this study are in agreement with 
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various authors (Fine. &Gray., 1999;  Kim., 2007;  Lim. et al., 2010), who stated that the 

SDH model is a better model when studying data that involves competing risks. 

Therefore, to meet the objective of identifying prognostic factors of discharge in the 

presence of competing risks, the sub-distribution hazard model was a better model than 

the CSH model.  

 

4.4.3 Comparison of Cumulative Incidence curves for Predictors based on Fitted 
Models 
 

In addition to the CSH and SDH models fitted, Cumulative Incidence curves for the SDH 

models were plotted to compare the CI’s for categories within the variable Sex and HIV 

status to clearly observe the differences. Figure 5 and 6 show the results after plotting the 

CI for sex and HIV status after fitting the SDH models.  

 

Figure 5: Cumulative Incidence by Sex for events “Discharge” and “Death” 
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Figure 6: Cumulative Incidence by HIV Status for events “Discharge” and “Death” 

 

The results from the plots in Figure 5 and 6 represent what has been obtained in the SDH 

models. For the main event discharge, there’s a slight difference between the CI’s for 

males and females. Females had a higher likelihood of being discharged than males. For 

competing event death, at day 25, females had a 0.2 cumulative incidence of death than 

males who had a 0.25 probability of dying within the study period. The CI curves for the 

variable HIV status for event discharge showed a slight difference in the CI’s between 

HIV positive and negative patients. For event death, HIV positive patients had a higher 

probability of dying than HIV negative patients as evidenced from the CI curves. With a 

0.15 probability of dying for HIV negative patients by day 25 and 0.25 probability of 

dying for HIV negative patients. 
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4.4.4 Factors Affecting LOS 
 

Age and HIV status were identified as factors associated with a lower probability of 

discharge occurring, and a higher probability of death occurring in the sub-distribution 

multivariable regression modeling (Table 6).  This is similar to one study which showed 

that Increasing age was associated with increasing risk of death for TB patients (Roberts 

& Daley, 2003). The results showed that older TB patients were less likely to be 

discharged from hospital than younger patients. This is likely since older people are more 

frail to diseases than younger patients, there immunities are much weaker than for the 

young people, therefore once they get infected or as soon as develop a disease it takes 

time for them to recover. This finding is in-line with findings from a study done by 

Holmquist et al, 2007 which showed that elderly patients were more likely to remain in 

hospital than younger ones. The 2007 US Vital and Health Statistics also reported that 

older patients have a longer average length of stay. This can be explained since it is 

commonly known that with advancing age, patients tend to have more comorbid chronic 

illnesses making them more vulnerable during hospitalization (Marengoni. et al., 2008)  

to this findings is a study done by (Çelik. et al., 2001), who mentioned that age, sex, 

residence, institution at which the patient admitted and insurance status determine 

unnecessary stay but statistically do not affect the average length of stay.  

 

Gender was significant for Univariate sub-distribution hazard model. Females were 23% 

more likely of being discharge than males, which implied that as the days of admission 

progressed, the probability of discharge for females was higher than for males. This was 

clearly observed from the Cumulative incidence curves, which showed females having a 
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higher cumulative incidence of discharge than their male counterparts. This is likely, 

since most males might visit the hospital when very sick unlike females who might visit 

the hospital once they observe a discomfort. Ferreira et al 2014 showed that increased 

length of hospital stay was proportional to increasing age, especially > 40 years; and that 

males were more likely to stay longer in hospital than females. 

 

Another interesting result on covariates affecting the probability of discharge taking into 

account that a death can happen was comparison between HIV positive TB patients and 

HIV negative TB patients. This variable was significant only in the sub-distribution 

model. This is possible where more HIV patients experienced the competing event death 

before a discharge and thus the effect of the competing event on the probability of the 

main event was noticeable. In this case, if the data involves a lot of the competing events 

it is best to use the SDH model which takes into account effect of the competing event on 

the probability of the main event(Teixeira. et al., 2013). HIV positive patients were 

17.6% less likely of being discharged from hospital and 50% more likely of dying in 

hospital as compared to HIV negative patients. This is quite a high difference and would 

need attention of medical researchers to find out why there is such a gap between these 

two groups. Oliveira et al. (2009) in Brazil concluded that a high number of patients with 

TB/HIV are expected in hospitals as admission patients. In addition to what Oliveira et al, 

found, according to the Government-funded research conducted in South Africa, HIV 

positive patients stay in hospital four times longer than other patients on average. Malawi 

is among one of the countries severely affected by the dual epidemic of HIV and TB 
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(WHO report, 2012). Therefore it is expected to have more HIV positive patients in 

hospital than HIV negative patients. 

 

4.5 Model Assumptions and Goodness-Of-Fit 

This section presents results for assessment of model adequacy. The proportional hazard 

assumption for the Cause-specific model was performed. Cox Snell residual test was 

performed to test goodness of fit and Martingale residual plot were used to linearity for 

covariate age. Time-varying covariates were used when modeling the sub-distribution 

hazard model to test for proportionality assumption for SDH model. 

 

4.5.1 Proportional Hazards Assumption of the Cause-specific Hazards for Event 

Discharge and competing event Death 

Table 6 and 7 present results obtained after carrying out a proportional hazards 

assumption test on the full model for cause-specific hazard when the failure event for the 

patient’s was discharge and death respectively. 

Table 6: The Schoenfold’s test for event Discharge 
Covariate Rho Chi-

Square 
P-value 

Age 0.019   0.28  0.5978 

HIV Status: Positive 0.029 0.61  0.4331 

Sex: Female 0.092 6.43  0.0112 

Global test   7.59 0.0552 

 

The Schoenfeld’s global test assesses the assumption that the hazards in the time-to 

discharge and time to death (the Cox-proportional hazard models) are proportional over 

time, i.e. testing whether effects of covariates on the risk remain constant over time. 
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Specifically, the test computes a test for each covariate i.e. testing the null hypothesis that 

the model fits the data. The alternative states that the data does not fit the data. A p-value 

(p<0.05) means that the null hypothesis that the data fits well cannot be rejected. 

 

Table 7: The Schoenfold’s global test for Death 

Covariate Rho Chi-Square P-value 
Age 0.004 0.00 0.955 
HIV Status: Positive -0.072 1.32 0.251 
Sex: Female -0.001 0.00 0.986 
Global test  1.41       0.733       

 

We observe that, at a 95% confidence level, the global test for the CSH model of 

discharge or death are not statistically significant (p-values > 0.05). This is evident from 

Table 6 and 7 where the global test is p=0.055 and p=0.733 respectively Therefore we 

accept the hypothesis of zero slopes, that means the assumption of constant proportional 

hazard for the CSH model of discharge or death holds.  

 

In regression analysis, it is recommended to look at the graphs of the regression in 

addition to performing the tests of non-zero slopes. Therefore, Fig. 7 presents the graphs 

for the scaled Schoenfeld residuals for each explanatory variable versus survival time. 

The solid line is a smoothing-spline fit to the plot. The graph clearly shows that the fitted 

lines (slopes) for the scaled Schoenfeld residuals for each covariate are not significantly 

different from zero (i.e. no systematic departures from a horizontal line), that is 

confirming the test results obtained in the Schoenfeld global test.  
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4.5.2 Test for PH assumption ofCSH model for event “Discharge” 

  

 

 

 

Figure 7: Schoenfold residual plots for each predictor for event discharge 
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4.5.3 Test for PH assumption of CSH model for competing event “Death” 

  

 

 

 

Figure 8: Schoenfold residual plots for each predictor for event death 

 

4.5.4 Time-Varying covariates 

In order to test if the Sub-distribution hazard model satisfied the proportional hazard 

assumption, a SDH model was performed with age, HIV Status as time-varying 

covariates interacting with the analysis time. Table 8 and 9 present’s results that were 

obtained after fitting the SDH models for failure event “Discharge” or “Death” 
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Table 8: Time varying covariates for failure event “Discharge” 
Model Categories SHR 95% CI P-Value 

Main: HIV 
Status 

Negative(reference)    

 Positive 0.896 (0.68    1.18) 0.433 

Age  0.99 (0.98    .999) 0.033 

Time-Varying:                
HIV Status 

 
Negative(reference) 

   

 Positive 0.996 (0.99    1.01) 0.376 

 Age  0.99 (0.999    1.00) 0.067 

 

The estimated hazard ratios are split into two categories in Stata, hazard ratios for 

variables with constant time and HR for time-varying covariates. From table 9, it is 

observed that HIV status and Age did not significantly interact with time (p>0.05), 

therefore a conclusion can be made that the PH assumption for the Fine and Gray 

regression is not violated. 

Table 9: Time varying covariates for failure event “Death” 

Model Categories SHR 95% CI P-Value 
Main: HIV 
Status 

Negative(reference)    

 Positive 1.726 (1.08 ,  2.75) 0.022 

           Age  1.025 (1.01 , 1.04) <0.001 

Time-Varying:                
HIV Status 

 
Negative(reference) 

   

 Positive 0.991 (0.97    1.01) 0.367 

 Age  0.99 (0.999    1.00) 0.931 

 

The same conclusion on the PH assumption can be made for the SDH model with death 

as the failure event, HIV Status and Age are not significant, thus failing to reject the null 

hypothesis of PH assumed. The PH assumption is not violated for this model (p>0.05).  
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4.5.5 Checking Linearity for Age 

To check if the variable age is appropriate in a continuous form, the Martingale’s 

residuals were plotted against age. Figure 9 presents the results for the analysis. 

 

 

Figure 9: Testing Linearity on variable age. 

 

There was an approximate linearity in the functional form of the covariate age. This 

indicates the need to transform the covariate Age was minimal. This shows that the log-

hazard is slightly linear in age. Therefore, in addition to the un-violated PH assumption, 

results of age on the cause-specific models were acceptable too. 
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4.5.6 Goodness of Fit Test 

To evaluate the fit of the model the Cox-Snell residuals were used. If the model fits the 

data well then the true cumulative hazard function conditional on the covariate vector has 

an exponential distribution with a hazard rate of one. First the Cox CSH models were 

fitted for failure event discharge and competing event death. The Nelson-Aalen 

cumulative hazard functions were plotted to compare the hazard functions to the diagonal 

line. Goodness of fit was determined if the hazard function follows the 45 degrees line, 

implying that the cumulative hazard was approximately exponential with a hazard rate of 

one. 

 

 
Figure 10: Cox Snell residual plot for event “Discharge” 
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Figure 11: Cox Snell residual plot for competing event “Death” 
 

Figure 10 and 11 shows that the hazard functions follow the 45 degree line very closely 

except for very large values of time especially for hazard event death. We can conclude 

that the models fit the data well, that is to say, the model adequately fits or describes the 

data. 

 

In the following chapter, we the conclusion, recommendations and study limitations are 

presented. 
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CHAPTER FIVE 

 

CONCLUSION, RECOMMENDATIONS, LIMITATIONS AND AREA F OR 

FURTHER RESEARCH 

 
5.1 Conclusions 
 

A comparison of the Cumulative Incidence (CI) and complement of Kaplan-Meier (1-

KM) showed that 1-KM produced higher probability of the failure event discharge unlike 

the Cumulative Incidence function. Since 1-KM considers the competing event death as 

censored and calculates the probability of discharge without taking into account the effect 

of the competing event death.  It is important to use the cumulative incidence function to 

obtain survivorship of an event of interest in the presence of competing events. 

 

The study showed that the influence of the covariates on the cause-specific hazard and on 

the sub-distribution hazard (cumulative incidence) of the event of interest gave different 

results. Age was the only significant covariate in the CSH model. While the SDH model 

showed that age and HIV status had a significant effect on the cumulative incidence of 

discharge. The difference arises since the CSH model looks at the effect of covariates on 

the event of interest only without regards to how the covariates act on the competing 

event. Individuals who fail from a death are treated as censored. While this is the case for 

CSH models the SDH models measure the effect of the covariate on the specific event 

cumulative probability (Dignam et al., 2012).  The estimates, between these two models 
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were slightly similar showing a moderate dependence between the failure event discharge 

and the competing event death. The study showed that to clearly observe prognostic 

factors on time to discharge in the presence of competing events, it is best to use the SDH 

model because covariate effect would take into account the effect of the competing event 

on observing the main event. 

 

The study revealed that factors Age and HIV status of a patient were significant 

predictors in determining hospital stay for TB patients. Older patients and HIV negative 

patients were more likely to be discharged from hospital within a short stay of hospital 

admission. The study showed a non-significant effect of ART on length of stay for TB 

patients. The Univariate SDH model showed that female patients were more likely to be 

discharged than males. Thus gender was considered an important factor affecting time to 

discharge. 

 

5.2 Recommendations 

• It is important to use competing risk methods when handling data that involves 

competing events. It is best to use the CIF other than the 1-KM to estimate the 

survivorship function. 

  

• If independence is observed between the event of interest and the competing 

event, the Cause-specific hazard model can be used to estimate effect of covariate 

on the hazard of interest but the SDH model is best to estimate effects of 

covariates on length of hospital stay. The use of the CSH model and the SDH 
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model depends on the objectives of the study. Thus it is important to report 

estimates from both models, since at times both might be informative.  

 

5.3 Area for Further Research 

• The study proposes further research on competing risk modelling and handling 

missing information.  

• The study used non-parametric and semi-parametric CR models on the data. It 

proposes if parametric models are used especially flexible parametric models 

which enable one to make vast assumptions on the baseline hazard.  

• The study proposes an extension of competing risks to repeated time to event 

data. 

• The study proposes a similar area of research but using a prospective study with 

all necessary variables captured such as treatment status and type, weights; 

previous TB episode; pulmonary and extra-pulmonary TB; previous opportunistic 

infection. 

 

5.4 Limitations 

The study used a retrospective design, thus had to use any information that was there, 

thereby some important information might not be available. The data obtained from 

SPINE did not capture variables such as Treatment, patient height, weight thus limiting 

explanation of the factors affecting the health outcome. The study incorporated missing 

values of failure time, HIV status and ART status which might have affected the results 

of the analysis thereby distorting the real picture of time to discharge. The study analyzed 
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time to discharge for the TB patients based on their primary diagnosis of TB but did not 

consider if prolonged stay was affected by a secondary diagnosis unrelated to TB. The 

data may have had some patients who may have been in the database twice (as recurrent 

or relapse patients). But the numbers were few considering the fact that the study 

assessed a short time period. Such patients could not be easily identified as identifiers 

were removed from the database in order to maintain confidentiality. 
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APPENDICES 

Appendix 1: Analysis Stata Commands 

set more off 

cd "E:\School\thesis\TB data" 

capture log using New TB data.log 

use "E:\School\thesis\TB data\New TB data.dta", clear 

***Descriptive Statistics*** 

graph box ftime, over(Gender1) over(HIVSTATUS) asyvars 

tabprimary_diagnosis 

tabsecondary_diagnosis 

tabstat age, by(Gender1) 

tabstatdftime, by(HIVSTATUS) 

 

***Cumulative Incidence Curves*** 

Stsetftime, fail(failtype=1) 

stcompetcif = ci stderr=se upper=hi lower=lo, compet1(0) by 
(HIVSTATUS) 

gencif_HIV_Negative = cif if failtype==1 & HIVSTATUS ==0 

gencif_HIV_positive = cif if failtype==1 & HIVSTATUS ==1 

twoway line cif_HIV_* _t, connect(J J) sort ytitle(Cumulative 
Incidence) xtitle(Analysis time in days) lpattern(shortdash) 

stpepemori HIVSTATUS, compet(0) 

 

stcompet CI = ci Stderr=se Upper=hi Lower=lo, compet1(0) by 
(ARTSTATUS) 

gencif_ART_No = cif if failtype==1 & ARTSTATUS ==0 

gencif_ART_Yes = cif if failtype==1 & ARTSTATUS ==1 
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twoway line cif_ART_* _t, connect(J J) sort ytitle(Cumulative 
Incidence)xtitle(Analysis time in Days) lpattern(solid shortdash 
dot) 

stpepemori ARTSTATUS, compet(0) 

 

stcompet ci = ci STderr=se UPper=hi LOwer=lo, compet1(0) by 
(Gender1) 

gencif_Gender_male = cif if failtype==1 & Gender1==0 

gencif_Gender_female = cif if failtype==1 & Gender1==1 

twoway line cif_Gender_* _t, connect(J J) sort title(Cumulative 
Incidence by Sex) ytitle(Cumulative Incidence) xtitle(Analysis 
time in Days) lpattern(solid longdash) legend(lab(1 "Male") lab(2 
"Female") stack) 

stpepemori Gender1, compet(0) 

stset, clear 

 
*********Comparison of 1-KM vs CI************* 
stsetftime, fail(failtype=1) 

sts gen KM=s 

gen Complement = 1-KM 

stcompetCumInc=ci, compet1(0) 

gen CI=CumInc if failtype==1 

twoway line Complement CI ftime, ytitle("Probability") 
lpattern(dash longdash) lcolor(green orange) 

stset, clear 

*****Standard Cox PH model****** 

stsetftime, fail(failtype) 

xi:stcox age 

xi:stcoxi.Gender 

xi:stcoxi.HIVSTATUS 

xi:stcox age i.Gender1 i.HIVSTATUS 

estatphtest, detail 

stset, clear 
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******Cause-Specific Hazards Model for event Discharge****** 

Stsetftime, fail(failtype==1) 

xi:stcox age 

xi:stcoxi.Gender 

xi:stcoxi.HIVSTATUS 

xi:stcox age i.Gender1 i.HIVSTATUS 

********Test for PH assumption********* 

estatphtest, detail 

stphtest, plot(HIVSTATUS) 

stphtest, plot(Gender1) 

********model selection criterion********* 

estatic 

stset, clear 

******* Cause-Specific Hazards Model for event Death******** 

Stsetftime, fail(failtype==0) 

xi:stcox age 

xi:stcoxi.Gender 

xi:stcoxi.HIVSTATUS 

xi:stcoxi.ARTSTATUS 

xi:stcox age i.Gender1 i.HIVSTATUS 

********Test for PH assumption********* 

estatphtest, detail 

stphtest, plot(HIVSTATUS) 

stphtest, plot(Gender1) 

**********model selection Criteria************* 

estatic 

stset, clear 

****Fine and Gray model for event discharge and competing event 
death**** 
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stsetftime, fail(failtype==1) 

xi:stcrreg  age, compete(failtype==0) 

xi:stcrreg  i.Gender1, compete(failtype==0)  

xi:stcrregi.HIVSTATUS, compete(failtype==0) 

xi:stcrreg  age i.Gender1i.HIVSTATUS, compete(failtype==0) 

********Test for PH assumption********* 

xi:stcrreg  age i.Gender1 i.HIVSTATUS, 
compete(failtype==0)tvc(age HIVSTATUS) 

estatic //model selection criteria 

stset, clear 

**** Fine and Gray model for event death and competing event 
discharge**** 

stsetftime, fail(failtype==0) 

xi:stcrreg  age, compete(failtype==1) 

xi:stcrreg  i.Gender1, compete(failtype==1)  

xi:stcrregi.HIVSTATUS, compete(failtype==1) 

xi:stcrreg  age i.Gender1 i.HIVSTATUS, compete(failtype==1) 

xi:stcrreg  age i.Gender1 i.HIVSTATUS, 
compete(failtype==1)tvc(age HIVSTATUS) //Test for PH assumption 

estatic // model selection criteria 

stset, clear 

************* Model Diagnostics*************** 

 *******************Goodness of Fit test*****************  

******for event discharge******* 

stsetftime, fail(failtype==1) 

xi: stcox age i.Gender1 i.HIVSTATUS, mgale(mg) 

predictcoxsn, csnell 

stsetcoxsn, fail(failtype==0) 

sts generate H=na 

twoway (scatter coxsn H) (line coxsncoxsn) 
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stset, clear 

 

******for event death*********** 

drop mg 

dropcoxsn 

stsetftime, fail(failtype==0) 

xi: stcox age i.Gender1 i.HIVSTATUS, mgale(mg) 

predictcoxsn, csnell 

stsetcoxsn, fail(failtype==1) 

sts generate H=na 

twoway (scatter coxsn H) (line coxsncoxsn) 

stset, clear 

********Checking Linearity for Age********* 

stsetftime, fail(failtype==1) 

xi: stcoxi.HIVSTATUS i.Gender1, mgale(mg) 

twoway (scatter mg age) (lowess mg age) 

stset, clear 
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Appendix 2: Summaries of Primary Diagnosis 
 

Primary diagnosis Frequency Percent 
   
?ART FAILURE ?ABDO TB 3 0.25 

?TB 2 0.16 

ANAEMIA;UNKNOWN TB  1 0.08 

ASPIRATION TUBERCULOSIS 1 0.08 

DRUG RESISTANT TB 2 0.16 

EPTB 4 0.33 

EPTB  RELAPSE 2 0.16 

MENINGITIS SUB-ACUTE PRESUMED 
TUBERCULO 

13 1.07 

PERIPHERAL NEUROPATHY DRUG 
RELATED – TB 

1 0.08 

PLEURAL EFFUSION FPTB 1 0.08 

PLEURAL EFFUSION TB 3 0.25 

PNEUMONIA PTB 1 0.08 

PNEUMONIA TB 1 0.08 

PTB  RELAPSE 1 0.08 

RENAL TUBERCULOSIS 2 0.16 

SEPSIS TB 1 0.08 

TB 2 0.16 

TB SPINE 1 0.08 

TUBERCULOSIS 38 3.11 

TUBERCULOSIS ?DISSEMINATED TB 1 0.08 

TUBERCULOSIS ?TBM 1 0.08 

TUBERCULOSIS ABDOMINAL 15 1.23 

TUBERCULOSIS ADENTIS 1 0.08 

TUBERCULOSIS ASCITES 3 0.25 

TUBERCULOSIS ASCITIS 1 0.08 

TUBERCULOSIS BONE  TUMOUR 1 0.08 

TUBERCULOSIS DISSEMINATED 317 25.98 

TUBERCULOSIS E P T B 13 1.07 

TUBERCULOSIS EPTB 67 5.49 

TUBERCULOSIS EPTB  RELAPSE 2 0.16 

TUBERCULOSIS EPTB PIEURAL 
EFFUSION 

1 0.08 
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TUBERCULOSIS EXTRAL PULMONALY 1 0.08 

TUBERCULOSIS INFECTIVE 1 0.08 

TUBERCULOSIS IRIS 1 0.08 

TUBERCULOSIS LYMPHADENTIS 1 0.08 

TUBERCULOSIS M D R 1 0.08 

TUBERCULOSIS MACROCYTIA  
ANAEMIA 

1 0.08 

TUBERCULOSIS MALIGNANCY 1 0.08 

TUBERCULOSIS MARIGNANCY 1 0.08 

TUBERCULOSIS MDR 3 0.25 

TUBERCULOSIS MELIGNANCY 1 0.08 

TUBERCULOSIS MENINGITIS 4 0.33 

TUBERCULOSIS MILIARY 63 5.16 

TUBERCULOSIS OTHER 9 0.74 

TUBERCULOSIS PENCORDINAAL  
EFFUSION 

1 0.08 

TUBERCULOSIS PERICARDIAL 1 0.08 

TUBERCULOSIS PERICARDIAL   
EFFUSSION 

1 0.08 

TUBERCULOSIS PERICARDIAL  
EFFISSION 

1 0.08 

TUBERCULOSIS PERICARDIAL  
EFFUSSION 

2 0.16 

TUBERCULOSIS PERICARDIAL 
EFFUSION 

2 0.16 

TUBERCULOSIS PIEURAL EFFUSION 1 0.08 

TUBERCULOSIS PLEURAL  EFFUSION 8 0.66 

TUBERCULOSIS PLEURAL  EFFUSSION 5 0.41 

TUBERCULOSIS PLEURAL EFFUSION 1 0.08 

TUBERCULOSIS PLEURAL EFFUSIONS 2 0.16 

TUBERCULOSIS PLEURAL EFFUSSSION 1 0.08 

TUBERCULOSIS PTB 1 0.08 

TUBERCULOSIS PTB  RELAPSE 14 1.15 

TUBERCULOSIS PTB RELAPSE 2 0.16 

TUBERCULOSIS PULMONARY 469 38.44 

TUBERCULOSIS PULMONARY  RELAPSE 1 0.08 

TUBERCULOSIS RECURENT 1 0.08 

TUBERCULOSIS RELAPSE 6 0.49 

TUBERCULOSIS RELAPSE  PTB 2 0.16 

TUBERCULOSIS RELAPSE  PTB  SMEAR  
P 

1 0.08 

TUBERCULOSIS SMEAR NEG 1 0.08 

TUBERCULOSIS SMEAR NEGATIVE 1 0.08 

TUBERCULOSIS SPINAL 17 1.39 
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TUBERCULOSIS TB CXR 1 0.08 

TUBERCULOSIS TUBERCULOUS 
MENINGITIS 

83 6.8 

TUBERCULOSIS TUBERCULOUS 
PERICARDITIS 

3 0.25 

   

Total 1,220 100 
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Appendix 3: Summaries of Patient’s Secondary Diagnosis 
 

Secondary diagnosis        Frequency Percent 
   
TUBERCULOSIS 1,186 89.58 
ANAEMIA 1 0.08 
ANAEMIA MACROCYTIC IRON 
DEFICIENCY 

1 0.08 

ANAEMIA MICROCYTIC CHRONIC 
DISEASE 

2 0.15 

ANAEMIA NORMOCYTIC CHRONIC 
DISEASE 

2 0.15 

ANAEMIA UNKNOWN CHRONIC 
DISEASE 

3 0.23 

ANAEMIA;NORMOCYTIC OTHER 1 0.08 
ANAEMIA;UNKNOWN 1 0.08 
ANAEMIA;UNKNOWN OTHER 1 0.08 
ANAEMIA;UNKNOWN 
PANCYTOPEMIA 

3 0.23 

ANAEMIA;UNKNOWN SEVERE 2 0.15 
ANGINA 3 0.23 
ART FAILURE 3 0.23 
CANCER UNKNOWN PRIMARY 3 0.23 
CANDIDIASIS OESOPHAGEAL 3 0.23 
CANDIDIASIS ORAL 3 0.23 
CAP 2 0.15 
CHEST INFECTION 1 0.08 
CIRRHOSIS 4 0.30 
DIABETES MELLITUS 
HYPOGLYCAEMIA 

1 0.08 

GASTROENTERITIS ACUTE 4 0.30 
GASTROENTERITIS CHRONIC 2 0.15 
HEART FAILURE CONGESTIVE 
CARDIAC FAILUR 

1 0.08 

HTN 1 0.08 
HYDROPNEUMOTHORAX 1 0.08 
HYPERTENSION OTHER 2 0.15 
KAPOSI'S SARCOMA CUTANEOUS 3 0.23 
LUNG CANCER OTHER 1 0.08 
LYMPHADENOPATHY 1 0.08 
MALARIA CEREBRAL 2 0.15 
MALARIA UNCOMPLICATED 2 0.15 
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MALIGNANCY 1 0.08 
MALNUTRITION 1 0.08 
MENINGITIS BACTERIAL CLINICAL 3 0.23 
MENINGITIS CRYPTOCOCCAL 1 0.08 
MENINGITIS;BACTERIAL OTHER 1 0.08 
PANCREATITIS OTHER 3 0.23 
PCP 1 0.08 
PHARYNGITIS 1 0.08 
PID 1 0.08 
PLEURAL EFFUSION PRESUMED DUE 
TO KAPOSI 

1 0.08 

PNEUMONIA 3 0.23 
PNEUMONIA ASPIRATION 2 0.15 
PNEUMONIA BRONCHOPNEUMONIA 2 0.15 
PNEUMONIA CAP 3 0.23 
PNEUMONIA COMMUNITY 
ACQUIRED 

2 0.15 

PNEUMONIA LOBAR 2 0.15 
PNEUMONIA OTHER 2 0.15 
PULMONARY EFFUSION 2 0.15 
SCHISTOSOMIASIS OTHER 1 0.08 
SCHIZOAFFECTIVE DISORDER 3 0.23 
SEPSIS 2 0.15 
SEPSIS NTS ISOLATED 12 0.91 
SEPSIS OTHER 2 0.15 
SEPSIS S PNEUMONIAE ISOLATED 1 0.08 
SEPSIS TYPHOID 1 0.08 
SEVERE IMMUNOSUPRESION 3 0.23 
TB ADENITIS 1 0.08 
TB BACTERAEMIA 1 0.08 
TB IRIS 3 0.23 
TUBERCULOSIS DISSEMINATED 2 0.15 
TUBERCULOSIS EPTB 1 0.08 
TUBERCULOSIS PULMONARY 5 0.38 
TUBERCULOSIS RELAPSE 2 0.15 
TUBERCULOSIS RELEPSE 1 0.08 
TYPHOID 4 0.30 
ULCER GASTRIC 1 0.08 
   
Total 1,324 100.00 
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Appendix 4: Certificate of Ethical Approval 
 

(See next page) 

 


